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Abstract

We study the macroeconomic implications of narratives, or beliefs about the economy

that affect decisions and spread contagiously. Empirically, we use natural-language-

processing methods to measure textual proxies for narratives in US public firms’ end-

of-year reports (Forms 10-K). We find that: (i) firms’ hiring decisions respond strongly

to narratives, (ii) narratives spread contagiously among firms, and (iii) this spread is

responsive to macroeconomic conditions. To understand the macroeconomic implica-

tions of these forces, we embed a contagious optimistic narrative in a business-cycle

model. We characterize, in terms of the decision-relevance and contagiousness of nar-

ratives, when the unique equilibrium features: (i) non-fundamental business cycles,

(ii) non-linear belief dynamics (narratives “going viral”) that generate multiple stable

steady states (hysteresis), and (iii) the coexistence of hump-shaped responses to small

shocks with regime-shifting behavior in response to large shocks. Our empirical esti-

mates discipline both the static, general equilibrium effect of narratives on output and

their dynamics. In the calibrated model, we find that contagious optimism explains

32% and 18% of the output reductions over the early 2000s recession and Great Re-

cession, respectively, as well as 19% of the unconditional variance in output. We find

that overall optimism is not sufficiently contagious to generate hysteresis, but other,

more granular narratives are.
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1 Introduction

At least since Keynes (1936), economists have hypothesized that waves of “spontaneous opti-

mism” generate business cycles. But what drives these fluctuations in beliefs and how much

do they matter? The Narrative Economics of Shiller (2017, 2020) postulates that conta-

gious stories and worldviews, or “narratives,” induce such movements in beliefs and underlie

macroeconomic events. However, the business-cycle relevance of economic narratives, and

even their precise meaning, remain unclear.

In this paper, we study how movements in narratives drive aggregate fluctuations in be-

liefs and output. We first develop a conceptual framework in which we define narratives as

subjective models of the macroeconomy that are potentially incorrect. By altering beliefs,

narratives influence economic actions like hiring and investment (they are decision-relevant).

Moreover, narratives can feed into themselves and gain or lose prevalence over time, in two

distinct but complementary ways: direct feedback from their prevalence (they are conta-

gious), as in as in epidemiological models, and indirect feedback from the economic activity

that narratives induce (they are associative), as in models of learning.

We next introduce empirical strategies to test narratives’ decision-relevance, contagious-

ness, and associativeness at the microeconomic level. We apply several natural-language-

processing methods to measure textual proxies for narratives in the universe of 10-K regu-

latory filings, in which all US public firms discuss “perspectives on [their] business results

and what is driving them” (SEC, 2011). We find that measured narratives predict hiring

and investment and that their spread depends on both narrative prevalence and economic

outcomes at the aggregate and industry level. Moreover, we find that measured narrative

optimism predicts over-optimism in sales forecasts and does not correlate positively with fu-

ture firm productivity growth, stock returns, or earnings growth. Thus, we interpret textual

optimism as a narrative that shifts beliefs while being unrelated to future fundamentals.

To understand the importance of these results, we adopt a “micro-to-macro” approach by

embedding narratives in a business-cycle model and quantifying its theoretical predictions

by using our empirical estimates. We show theoretically that optimistic narratives can lead

to non-fundamentally driven boom-bust cycles and hysteresis. Conditional on calibrating

standard preference and technological parameters, our empirical estimates point-identify

the dynamic macroeconomic effects of narratives. Quantitatively, we find that aggregate

fluctuations in narrative optimism account for approximately 32% and 18% of the output

reductions over the early 2000s recession and Great Recession, respectively. We therefore

argue that contagious narratives may be a first-order determinant of the business cycle.
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Measuring Narratives. We first empirically evaluate the two premises of our framework:

narratives’ decision-relevance and their contagiousness and associativeness. To this end, we

combine data on US public firms’ adoption of textual narratives, using firms’ 10-K filings

and earnings call transcripts, and their decisions, using data from Compustat.

Our first method for measuring textual proxies for narratives computes the intensity of

positive and negative sentiment using the 10-K-specific dictionary introduced by Loughran

and McDonald (2011). We interpret this measure as capturing overall optimism. This

measure, which will be our main focus, connects our work to a large literature that studies

waves of optimism and pessimism at the aggregate level, without measuring how optimism

shapes economic decisions or spreads at the microeconomic level (see e.g., Beaudry and

Portier, 2006; Lorenzoni, 2009; Angeletos and La’O, 2013; Benhabib, Wang, and Wen, 2015).

To complement our study of narrative optimism, we apply two other techniques to mea-

sure more granular narratives. Our first such technique computes the similarity between

firms’ language and the language that best characterizes the Perennial Economic Narra-

tives introduced by Shiller (2020) using a method that has also been applied in Hassan,

Hollander, Van Lent, and Tahoun (2019) and Flynn and Sastry (2022). These “narratively

identified narratives” are motivated by the historical evidence of relevance and contagious-

ness provided by Shiller (2020). Our second granular technique estimates a Latent Dirichlet

Allocation (LDA) model (Blei, Ng, and Jordan, 2003), which extracts an underlying set of

topics, probability distributions over words, based on the frequency with which certain words

co-occur within documents. Since we recover these “topic narratives” via an unsupervised

method, they allow the data to speak flexibly about what narratives are prevalent among

firms without restricting the issues to which narratives may pertain.

Empirical Results. We first provide descriptive evidence about our estimated narratives.

Across the three methods, almost all of our estimated narratives are persistent and cyclical.

However, it is difficult to ascertain the relationship between narrative and macroeconomic

dynamics from the time series alone. This is because narratives potentially serve dual roles

of describing true economic fundamentals and encoding non-fundamental beliefs. This chal-

lenge for time-series analysis motivates our strategy of testing the two premises of narrative

macroeconomics—that narratives are decision-relevant and that they spread contagiously

and associatively—at the microeconomic level.

Using our panel data, we first test the decision-relevance of our measured narratives.

We focus initially on optimism. We find that optimistic firms, defined as firms with above-

median sentiment, hire 3.6 percentage points more than pessimistic firms in a given year,

net of firm and sector-time fixed effects. This finding is robust to accounting for firm-

level productivity and financial conditions. Moreover, we find that optimism is uncorrelated
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with future productivity growth and negatively correlated with future stock returns and

profitability. These findings are inconsistent with the hypothesis that optimism predicts

hiring only because it captures positive firm-level fundamentals (or news thereof). Further,

we show using managerial guidance data from IBES that optimism in language predicts

negative errors in sales forecasts, or over-optimistic beliefs.

We therefore interpret the association of textual optimism with hiring as arising from non-

fundamental, narratively driven, and optimistic beliefs. To underscore this interpretation, we

show that changes in optimism driven by plausibly exogenous changes in CEOs (i.e., those

caused by death, illness, personal issues, or voluntary retirement of an incumbent CEO, as

coded by Gentry, Harrison, Quigley, and Boivie, 2021) lead to quantitatively similar effects

on hiring. Finally, we study the relevance of the Perennial Economic Narratives and our

estimated topics. Because these narratives are high-dimensional and may not be relevant for

firm decisions, we use the Rigorous LASSO method of Belloni, Chernozhukov, Hansen, and

Kozbur (2016) for estimating their effects on hiring. We find that two of the nine Perennial

Economic Narratives and eleven of the one hundred topics are relevant for hiring.

Second, we study how our measured narratives spread across firms over time. Focusing on

optimism, we find that greater aggregate optimism and higher aggregate real GDP growth

are associated with a greater probability that a firm is optimistic in the following year—

that is, in our language, optimism is contagious and associative. We also find evidence

of contagiousness and associativeness at the industry level when we control for aggregate

conditions with time fixed effects. Moreover, both these aggregate and industry-level results

are robust to controlling for future idiosyncratic and aggregate economic conditions. This

finding is inconsistent with the explanation that aggregate optimism drives future optimism

through its correlation with omitted positive news about measured economic conditions.

By using lagged aggregate optimism in a panel setting, our estimates are not threat-

ened by the reflection problem of Manski (1993). Nevertheless, common shocks that are not

spanned by measured aggregate and industry-level conditions may generate omitted variables

bias. To address this concern, we employ strategies based on using idiosyncratic shocks to

large firms (the granular IV approach of Gabaix and Koijen, 2020) and the aforementioned

plausibly exogenous changes in CEOs as instruments for aggregate and industry-level opti-

mism. We find qualitatively consistent effects. Finally, we perform similar analyses for the

other decision-relevant narratively-identified and topic narratives. We find that almost all

of them are contagious and that many are associative.

Model. Having provided microeconomic evidence about narratives’ decision-relevance, con-

tagiousness, and associativeness, we now study their macroeconomic implications. To do this,

we embed narratives in an otherwise standard Neoclassical business-cycle model with dis-
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persed information à la Angeletos and La’O (2010, 2013). The consumption, production,

and labor supply side of the model is a real variant of the standard Neoclassical model

of Woodford (2003) and Gaĺı (2008). In particular, the model features aggregate demand

externalities (Blanchard and Kiyotaki, 1987), which generate a motive among firms to co-

ordinate the levels of their production. Unlike the aforementioned models, in which firms

have correctly specified and rational expectations, our model features narratives that gener-

ate heterogeneous and incorrect prior beliefs about the state of aggregate productivity. In

our main analysis, we specialize to a case with two narratives: optimism and pessimism.

The evolution of narratives is governed by the probabilities that optimists and pessimists

remain and become optimistic, respectively, as a function of aggregate output (associative-

ness) and the fraction of optimists in the population (contagiousness). This allows the model

to accommodate the narrative dynamics that we estimated in the data.

Theoretical Results. We next derive analytical results that characterize how narratives

can generate non-fundamental fluctuations in aggregate output, hysteresis, and boom-bust

cycles. We first establish that there is a unique equilibrium in which aggregate output is

log-linear in aggregate productivity and a non-linear function of the fraction of optimists in

the population. In the case of unanimous optimism, the contribution of optimism equals the

partial-equilibrium effect of optimism on one firm’s hiring, as we measured empirically, times

a general-equilibrium multiplier. This is because optimism matters both directly for firms

and indirectly through aggregate demand externalities. In this way, movements in aggregate

optimism lead to non-fundamental fluctuations in aggregate output.

We next describe the dynamics of narratives and output. For a fixed level of aggregate

productivity, while there always exists a steady-state level of optimism and equilibrium is

unique, there may nevertheless be multiple steady-state levels of optimism. We provide

a necessary and sufficient condition for a particularly extreme type of this steady-state

multiplicity: if the decision-relevance, contagiousness, and associativeness of narratives are

sufficiently strong, then unanimous optimism and unanimous pessimism are both stable

steady states. Moreover, depending on the initial fraction of optimists, the economy is

(almost everywhere) globally attracted to one of these extreme steady states. In this way,

narratives can generate hysteresis: depending on how many optimists there are initially,

optimism can either catch on forever (“go viral”) or die out entirely.

We finally study how the economy evolves in response to shocks. Responses to unantici-

pated “MIT shocks” can fall into three qualitative regimes. If a shock is small, it has a fully

transitory impact on aggregate output, because it fails to seed a new narrative. If a shock is

medium-sized, it has potentially hump-shaped effects on aggregate output, because it seeds

a new narrative that briefly persists before dying out. If a shock is large, it has a permanent
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effect on aggregate output, because it makes a narrative “go viral.” Studying stochastic

behavior, we show that the economy oscillates between extreme optimism and pessimism

and provide analytical upper bounds on the expected period of these oscillations. Both

the possibility of these effects and their quantitative magnitudes depend on key measurable

parameters: the decision-relevance, associativeness, and contagiousness of narratives.

Quantification. In the final part of the paper, we calibrate our model to quantify the

extent to which fluctuations in narrative optimism explain historical business cycle fluc-

tuations and understand the extent to which narrative dynamics generate hysteresis. In

point-identifying the model, we leverage the fact that our empirical estimates identify both

the partial equilibrium effects of narratives on hiring and the nature of narrative diffusion.

We first study the extent to which narratives generate non-fundamental fluctuations

in output. We find that measured aggregate movements in optimism account for 32% of

output loss during the early 2000s recession and 18% during the Great Recession. More

systematically, we find that optimism accounts for 19% of output variance, and 34% of the

short-run (one-year) and 81% of the medium-run (two-year) autocovariance in output.1

We next study the potential for narratively driven hysteresis. For optimism, we quanti-

tatively reject the theoretical condition required for hysteresis in both optimism and output

dynamics. But we do not reject this condition for other narratives, implying that it is possible

for these narratives either to die out or “go viral” depending on initial conditions.

Finally, we study a variant model which allows multiple latent narratives to form a basis

for overall optimism, to evaluate Shiller’s (2020) hypothesis that many narratives may be

mutually reinforcing. We find that the interaction of many simultaneously evolving, granular,

and highly contagious narratives can underlie stable fluctuations in aggregate optimism.

Related Literature. We relate to an empirical literature that measures narratives fol-

lowing Carroll (2001) and Shiller (2017).2 Of most relevance, Andre, Haaland, Roth, and

Wohlfart (2022) use surveys to understand narratives underlying inflation, Goetzmann, Kim,

and Shiller (2022) analyze narratives about financial crashes in news media, Macaulay and

Song (2022) study how news coverage of specific narratives affects sentiment on social media,

and Bybee, Kelly, Manela, and Xiu (2021) apply LDA to the full text of Wall Street Journal

articles to extract narrative time series. Our approach differs in its use of text data about

the cross-section of firms to extract narratives, uncover their effects on decision-making, and

study their spread. Our empirical analysis therefore relates to a literature studying the re-

1Normatively, we show that contagious optimism can be welfare-improving even if it is unfounded. Quan-
titatively, we find that optimism is welfare-improving and welfare-equivalent to a 1.3% production subsidy.

2See Carroll and Wang (2022) for a review of the literature on “epidemiological” models of expectations
formation that are centered around social interactions.
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lationship between firm-level outcomes and their language (Loughran and McDonald, 2011;

Hassan, Hollander, Van Lent, and Tahoun, 2019; Hassan, Schreger, Schwedeler, and Tahoun,

2021; Handley and Li, 2020). In contrast to these papers, we calibrate a model to match our

firm-level findings and study their general-equilibrium consequences.3

Our work relates to a literature that studies business cycles through time variation in

agents’ beliefs. First, our work relates to papers which postulate that the economy undergoes

exogenous shocks to demand via news, noise, sentiment, or extrapolation, in theory (Loren-

zoni, 2009; Angeletos and La’O, 2010, 2013; Benhabib, Wang, and Wen, 2015; Benhima,

2019; Caballero and Simsek, 2020) and in quantitative applications (Beaudry and Portier,

2006; Christiano, Ilut, Motto, and Rostagno, 2008; Angeletos, Collard, and Dellas, 2018;

Bhandari, Borovička, and Ho, 2019; Maxted, 2020; Huo and Takayama, 2022).4 Our work

micro-founds such shocks via the endogenous evolution of narratives and corresponding de-

gree of optimism, develops methods to measure agent-level sentiment via textual analysis,

and shows how to use microeconomic evidence to quantify their macroeconomic implications.

Second, our modeling of narratives and their spread relates to the work of Carroll (2001),

Burnside, Eichenbaum, and Rebelo (2016), and Shiller (2017), in which beliefs spread conta-

giously between agents. At the same time, our approach differs as we explicitly model narra-

tives and provide microeconomic evidence about narratives’ decision-relevance and spread.5

Finally, in studying the dynamics of misspecified models, we relate to a large macroeco-

nomics and theory literature on model misspecification and learning (see e.g., Marcet and

Sargent, 1989a,b; Brock and Hommes, 1997; Esponda and Pouzo, 2016; Acemoglu, Cher-

nozhukov, and Yildiz, 2016; Adam, Marcet, and Beutel, 2017; Molavi, 2019; Bohren and

Hauser, 2021). This literature primarily characterizes the limit points of agents’ models.

Instead, we study short-run fluctuations and time variation in the models held by agents.

This approach is similar to that of Kozlowski, Veldkamp, and Venkateswaran (2020), but we

differ in our non-Bayesian and analytical, rather than computational, approach.

Outline. The rest of the paper proceeds as follows. In Section 2, we develop our general

framework. In Section 3, we describe our data and measurement. In Section 4, we detail

our empirical strategy and results. In Section 5, we introduce our macroeconomic model

with contagious narratives. In Section 6, we provide theoretical results on macroeconomic

dynamics. In Section 7, we quantify the role of narratives. Section 8 concludes.

3Flynn and Sastry (2022) and Song and Stern (2021) share this approach of contextualizing the effect of
language-based variables on firm-level outcomes in a macroeconomic model.

4Bordalo, Gennaioli, Shleifer, and Terry (2021) and Bordalo, Gennaioli, Kwon, and Shleifer (2021) re-
spectively study how extrapolation can generate credit cycles and speculative bubbles.

5Thus, our model also differs from recent theoretical work in which models correspond to likelihoods
(Schwartzstein and Sunderam, 2021) or directed acyclic graphs (Spiegler, 2016; Eliaz and Spiegler, 2020).
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2 Narratives: A Conceptual Framework

We first describe a conceptual framework that formalizes the two premises of the macroe-

conomics of narratives: that narratives are decision-relevant and that narratives spread

contagiously and associatively. We embed these two premises in an abstract game in which

narratives form the building blocks of agents’ beliefs and agents care about their own actions,

fundamentals, and aggregates of other agents’ actions. This game nests our later macroe-

conomic model in Section 5. We then derive two regression equations that allow us to test

the decision-relevance, contagiousness, and associativeness of narratives. We bring these re-

gressions to the data in Section 4 and show that they obtain exactly in our macroeconomic

model in Section 6.

2.1 Narratives and Beliefs

We begin by formally defining narratives and how they map into agents’ beliefs. There are

random aggregate fundamentals θ ∈ Θ. For example, these fundamentals might represent

aggregate productivity or the strength of demand. An individual narrative is a model of

fundamentals. We describe each narrative, indexed by k ∈ K, as a probability distribution

Nk ∈ ∆(Θ) within the set of narratives N = {Nk}k∈K. For example, if the fundamental θ

describes the strength of productivity, then a pessimistic narrative NP might correspond to

the view that “productivity in the economy is low,” while an optimistic narrative NO may

represent the view that “productivity in the economy is high.”

Agents combine narratives to form priors about the fundamental by placing a vector of

weights λ = {λk}k∈K ∈ Λ ⊆ ∆(K) on each narrative.6 An agent with narrative weights λ has

an induced prior distribution over fundamentals given by the following linear combination

of distributions in N :

πλ(θ) =
∑
k∈K

λkNk(θ) (1)

Continuing the example, an agent who is fully pessimistic might place weight λP = 1 on the

pessimistic narrative and complementary weight λO = 0 on the optimistic narrative, so their

subjective probabilities for each state θ are π(θ) = NP (θ). An agent who has been convinced

by neither narrative might take a middle ground and consider both equally likely, which we

would represent with (λP , λO) = (1
2
, 1

2
) or beliefs π(θ) = 1

2
NO(θ) + 1

2
NP (θ).

6The management and organizational literature also views narratives as forming a common set of stories
that underpin beliefs (see, e.g., Isabella, 1990; Maitlis, 2005; Loewenstein, Ocasio, and Jones, 2012; Vaara,
Sonenshein, and Boje, 2016). Relatedly, Acemoglu and Robinson (2021) postulate that culture arises from
the combination of latent cultural attributes. By microfounding the process by which cultural attributes
combine, our analysis could be applied to this context.
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2.2 Premise I: Narratives are Decision-Relevant

The first premise of the macroeconomics of narratives is that narratives are decision-relevant.

To model this, we introduce a continuum of agents indexed by i ∈ [0, 1] whose beliefs are

formed from narratives, as described above, and who make decisions at a sequence of time

periods t ∈ N.

These agents care about their own actions xit ∈ X , aggregate outcomes Yt ∈ Y , the

fundamental state θt ∈ Θ, and an idiosyncratic preference shifter ωi ∈ Ω. They have utility

functions u : X × Y × Θ × Ω → R and information sets Iit. Given their information sets,

agents update each narrative belief by applying Bayes’ rule and then form their posterior by

placing their narrative weights on the updated narrative beliefs. Given a conjecture about

the mapping from fundamental states to aggregates Ŷt : Θ→ Y , the agents maximize their

expected utility given narrative weights λit and information Iit:

max
xit∈X

Eπλit
[
u(xit, Ŷt(θt), θt, ωi) | Iit

]
(2)

We linearize these best replies to obtain the following regression equation that allows us

to test for the decision-relevance of narratives (see Proposition 6 in Appendix A.1 for the

formal arguments):7

xit = γi + χt +
∑
k∈K

δkλk,it + εit (3)

In this equation, γi captures time-invariant factors (preference shifters), χt captures time-

varying aggregate variables such as fundamentals or the overall prevalence of narratives,

the δk correspond to the appropriately normalized expectation of both fundamentals and

endogenous aggregate outcomes under narrative k, and εit corresponds to noise around these

expectations caused by differences in the information sets across agents. The hypothesis

that narratives are decision-relevant is that δk 6= 0 for some k ∈ K. To test this hypothesis

in panel data on firms, we will use firm hiring as the relevant outcome and textual measures

of narrative adoption as proxies for λk,it, the belief weights in the model. An analog of this

equation will hold in equilibrium without approximation in our theoretical model in Section

5, facilitating the use of our estimates for model calibration.

7There we also provide assumptions sufficient to guarantee a quadratic misspecification bound and show
that εit is mean zero and independent from γi, χt, and λit. This latter point implies that, modulo issues of
misspecification, the δk can be estimated consistently via OLS.
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2.3 Premise II: Narrative Spread Is Contagious and Associative

We now formalize the second premise: that narratives spread contagiously and associatively.

The extent of narrative penetration is summarized by the cross-sectional distribution of nar-

ratives in the population, Q ∈ ∆(Λ). This represents the distribution of agents’ distributions

of narrative weights. For example, in an economy populated by only optimists λO = (0, 1),

pessimists λP = (1, 0) and moderates λM = (1
2
, 1

2
), we would have that Q = (QO, QP , QM)

corresponds to the fraction of the population with each combination of weights over optimism

and pessimism.

The evolution of the distribution of narratives over time is described by an updating rule

P : Λ×Y ×∆(Λ)→ ∆(Λ), which returns the probabilities {Pλ′(λ, Y,Q)}λ′∈Λ that an agent

with narrative weights λ changes their weights to λ′ when the endogenous state is Y and

the distribution of narratives in the population is Q.8 Hence, conditional on a distribution

of narratives at time t given by Qt and realized endogenous outcomes given by Yt, the next

period’s distribution of narratives is:

Qt+1,λ′ =
∑
λ∈Λ

Qt,λPλ′(λ, Yt, Qt) (4)

At this level of generality, the updating function can capture Bayesian updating by agents

given some latent information structure. However, we can also model behavioral phenomena

such as associative learning where agents associate certain states of the economy with certain

models (e.g., “aggregate output is high, therefore productivity is high”), and contagiousness,

wherein the distribution of narratives itself affects updating.

We linearize the narrative updating equations to obtain the following system of linear

probability models (see Proposition 7 in Appendix A.1 for the formal arguments):

P[λit = λ | λi,t−1, Yt−1, Qt−1] = ζλ +
∑
λ′∈Λ

uλ′,λI[λi,t−1 = λ′] + r′λYt−1 + s′λQt−1 (5)

Here, u captures agents’ stubbornness in updating (i.e., their proclivity not to update), r

captures associativeness in updating (i.e., their association of outcomes with a direction of

updating), and s captures contagiousness in updating (i.e., the direct influence of peers’ nar-

rative weights). The hypotheses that narratives are contagious and associative correspond,

respectively, to sλ 6= 0 and rλ 6= 0 for some λ ∈ Λ. Again, we will use panel data on textual

narrative adoption to test these hypotheses. Equation 5 is generated without approximation

in the special case of our theoretical model in Section 5 that we study quantitatively.

8In Appendix B.6, we extend this setting to allow for idiosyncratic fundamentals and updating that
depends on their realizations.
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3 Data, Measurement, and Descriptive Statistics

We now describe how we develop a panel dataset on firms’ narrative loadings and decisions.

We measure textual proxies for narratives by applying several natural-language-processing

techniques to two corpora of language: the universe of public firms’ SEC Forms 10-K and a

large sample of earnings calls. We combine these measures of narratives with data on firm

fundamentals and choices. Finally, we provide descriptive facts regarding the time-series and

cross-sectional properties of narratives.

3.1 Data

Text. Our main source of firm-level textual data is SEC Form 10-K. Each publicly traded

firm in the US submits an annual 10-K to the SEC. These forms provide “a detailed picture

of a company’s business, the risks it faces, and the operating and financial results of the

fiscal year.” Moreover, “company management also discusses its perspective on the business

results and what is driving them” (SEC, 2011). This description is consistent with our notion

that agents’ narratives constitute a view of the world and its rationalization via some model.

We download the universe of SEC forms 10-K from the SEC Edgar database from 1995 to

2019. This yields a corpus of 182,259 html files comprising the underlying text of the 10-K,

various formatting information, and tables. We describe our exact method for processing the

text data in Appendix C.1. The three key steps are pre-processing the raw text data to isolate

English-language words, associating words with their common roots via lemmatization, and

fitting a bigram model that groups together co-occurring two-word phrases. We then count

the occurrences of all words, including bigrams, in all documents to obtain the bag-of-words

representation (i.e., a vector of word counts) for each document.9 Our final sample consists

of 100,936 firm-by-year observations from 1995 to 2018.

As an alternative source of text data, we use public firms’ sales and earnings conference

calls. Our initial sample consists of 158,810 documents from 2002 to 2014. We apply the

same natural-language-processing techniques that we employ for the 10-Ks to this corpus.

We average variables over the periods between successive 10-Ks to obtain a firm-by-fiscal-

year dataset. Our final sample consists of 25,589 firm-by-year observations. We describe

more details in Appendix C.2.

9Other machine-learning approaches use, as input, the entire document instead of its bag-of-words rep-
resentation. Examples include Doc2Vec, as recently employed by Goetzmann, Kim, and Shiller (2022) to
study crash narratives, and RELATIO, which was recently developed by Ash, Gauthier, and Widmer (2021).
We view integrating these methods into our analysis as an interesting avenue for future study.
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Firm Fundamentals and Choices. We compile our dataset of firm fundamentals and

choices using Compustat Annual Fundamentals from 1995 to 2018. This dataset includes

information from firms’ financial statements on employment, sales, input expenses, capital,

and other financial variables. We apply standard selection criteria to screen out firms that are

very small, report incomplete information, or were likely involved in an acquisition. We also

ignore firms in the financial and utilities sectors due to their markedly different production

and/or market structure. More details about our sample selection are in Appendix D.1.

We organize firms into 44 industries, which are defined at the NAICS 2-digit level, but

for Manufacturing (31-33) and Information (51), which we split into the 3-digit level. To

study narrative transmission at a finer level, we also define peer sets for the subset of firms

traded on the New York Stock Exchange using the method of Kaustia and Rantala (2021).

These authors exploit common equity analyst coverage to define peers for each firm.10

To measure total factor productivity, we estimate a constant-returns-to-scale, Cobb-

Douglas, two-factor production function in materials and capital, for each industry. We

estimate the output elasticities using the ratio of materials expenditures to total sales and

an assumed revenue returns-to-scale of 0.75. More details are provided in Appendix D.2.

We denote our estimated log-TFP variable as log θ̂it.

Manager and Analyst Beliefs. We collect data from IBES (the International Brokers’

Estimate System) on quantitative sales forecasts by companies and their equity analysts.

Specifically, we use the IBES Guidance dataset which records, for specific variables, both (i)

a numerical management expectation recorded from press releases or transcripts of corporate

events and (ii) a contemporaneous consensus value from equity analysts. We restrict to

the first recorded forecast per fiscal year of that year’s sales. When managers’ guidance

is reported as a range, we code a point-estimate forecast as the range’s midpoint. We

construct two variables from these data at the level of firms i and fiscal years t. The

first, GuidanceOptExAnteit, is an indicator of managers’ guidance exceeding the analyst

consensus. The second, GuidanceOptExPostit, is an indicator of managers’ guidance minus

the realization (both in log units) exceeding the sample median.11

3.2 Measurement: Recovering Narratives from Language

We employ three techniques to measure textual narratives at different levels of granularity.

10Firm j is a peer of firm i at time t if they have more than C common analysts, where C is chosen so
that the probability of having C or more common analysts by chance is less than 1% when analysts following
firm i randomly choose the firms they follow among all firms with analysts in period t.

11This method corrects for the fact that, in more than half of our observations, guidance is lower than the
realized value, presumably due to asymmetric incentives.
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Sentiment Narratives. We first measure firms’ narrative sentiment. We categorize indi-

vidual words as either positive or negative using the dictionaries constructed by Loughran

and McDonald (2011). These dictionaries adjust standard tools for sentiment analysis to

more precisely score financial communications, in which certain words (e.g., the leading ex-

ample “liability”) have specific definitions.12 We first define WP as the set of positive words

and WN as the set of negative words. For reference, we print the 20 most common words in

each set in Appendix Table A1. We calculate positive and negative sentiment as:

posit =
∑
w∈WP

tf(w)it negit =
∑
w∈WN

tf(w)it (6)

where tf(w)it is the term frequency of all bigrams including word w in the time-t 10-K

of firm i. We then construct a one-dimensional measure of net sentiment, sentimentit, by

computing the across-sample z-scores of both positive and negative sentiment and taking

their difference. Finally, we define a firm i as being optimistic at time t if its sentiment is

above the entire-sample median:

optit = I [sentimentit ≥ med (sentimentit)] (7)

This variable has a simple interpretation in capturing optimistic narratives, but necessarily

collapses more fine-grained discussion of specific topics.

Narrative Identification of Narratives. To measure more specific narratives enter-

tained by firms, we next consider a supervised strategy based on narratively identifying a

set of narratives using the text of Shiller’s Narrative Economics. Shiller identifies a set of

nine Perennial Economic Narratives : Panic versus Confidence; Frugality versus Conspicu-

ous Consumption; The Gold Standard versus Bimetallism; Labor-Saving Machines Replace

Many Jobs; Automation and Artificial Intelligence Replace Almost All Jobs; Real Estate

Booms and Busts; Stock Market Bubbles; Boycotts, Profiteers, and Evil Businesses; and

The Wage-Price Spiral and Evil Labor Unions. Each of these narratives and its history is

described in its own chapter in Narrative Economics. We measure narrative adoption by

computing the similarity between each 10-K filing and the relevant chapter of the book.

Formally, we use a method related to prior work by Hassan, Hollander, Van Lent, and

Tahoun (2019) and our own implementation in Flynn and Sastry (2022). For each narrative

k, we first compute the term-frequency-inverse-document-frequency (tf-idf) score to obtain

12Loughran and McDonald (2011) generate the dictionaries based on human inspection of the most common
words in the 10-Ks and their usage in context. We describe more details of our document scoring methodology
in Appendix C.3.
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a set of words most indicative of that narrative:

tf-idf(w)k = tf(w)k × log

(
1

df(w)

)
(8)

where tf(w)k is the number of times that word w appears in the chapter corresponding to

narrative k in Narrative Economics and df(w) is the fraction of 10-K documents containing

the word. Intuitively, if a word has a higher tf-idf score, it is common in Shiller’s description

of a narrative but relatively uncommon in 10-K filings. We define the set of 100 words

with the highest tf-idf score for narrative k as Wk. For reference, we print the twenty most

common words in each set Wk in Appendix Table A2.

Finally, we score document (i, t) for narrative k by the total frequency of narrative words:

Ŝhiller
k

it =
∑
w∈Wk

tf(w)it (9)

We compute loadings on each narrative, Shillerkit, by taking the z-score. These variables

measure a set of more specific topics, but rely on Shiller’s specific wording of narratives.

Unsupervised Recovery of Narratives. Finally, to identify narratives without relying

on any external references, we use Latent Dirichlet Allocation (LDA), a hierarchical Bayesian

model in which documents are constructed by combining a latent set of topic narratives (Blei,

Ng, and Jordan, 2003). More specifically, given our corpus of 10-Ks with M documents, we

postulate that there are K = 100 topics. First, the number of words in each document

is drawn from a Poisson distribution with parameter ξ. Second, the distribution of topics

in each document is given by ϑ = (ϑ1, . . . , ϑM), over which we impose a Dirichlet prior

with parameter α = {αk}k∈K, where αk represents the prior weight that topic k is in any

document. Third, the distribution of words across topics is given by φ = (φ1, . . . , φK), over

which we impose a Dirichlet prior with parameter β = {βjk}k∈K, where βjk is the prior weight

that word j is in topic k. Finally, we assume that individual words in each document d are

generated by first drawing a topic z from a multinomial distribution with parameter ϑ, and

then selecting a word from that topic by drawing a word from a multinomial distribution with

parameter φz. Intuitively, in an LDA, the set of documents is formed of a low-dimensional

space of narratives of co-occurring words.

To estimate the LDA, we use the Gensim implementation of the variational Bayes al-

gorithm of Hoffman, Bach, and Blei (2010), which makes estimation of LDA on our large

dataset feasible, when standard Markov Chain Monte Carlo methods would be slow.13 Given

13For computational reasons, we estimate the model using all available documents from a randomly sam-
pled 10,000 of our 37,684 unique possible firms. We score all documents with this estimated model.
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Figure 1: Aggregate Time Series for Six Selected Narratives
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Notes: Optimism is measured as the fraction of optimistic firms. The other five time series are
cross-sectional averages of z-score transformed variables (zero mean, unit standard deviation).

the estimated LDA, we construct the document-level narrative score as the posterior prob-

ability of that topic in the estimated document-specific topic distribution p̂:

topickit = p̂(k|dit) (10)

For each of the eleven topics that our subsequent analysis identifies as relevant for hiring

(see Section 4.1), we print the ten highest-weight bigrams and their weights in Appendix

Table A3. These topics are qualitatively different from the word sets used by our sentiment

scoring (Appendix Table A1) and Shiller narratives (Appendix Table A2).

3.3 Descriptive Analysis of Narratives

Before our main empirical analysis, we first describe the time-series and cross-sectional struc-

ture of our measured narratives.

Time-Series Properties. In Figure 1, we show the time path of six selected measured

narratives: optimism, “Labor-Saving Machines” and “Stock Bubbles” from Shiller’s peren-

nial narratives, and three topics whose three most common terms are “Advertising, Retail,

Brand”; “Reorganization, Bankruptcy, Plan”; and “Technology, Revenue, Development.”

Our choices among the Shiller chapters and unsupervised topics are among the set that our
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later analysis suggests is particularly important for explaining hiring in the cross-section. At

a glance, all of these narratives are highly persistent and feature business-cycle fluctuations,

and some have notable trends and breaks.14 In Appendix Table A4, we report summary

statistics for all narratives’ autocorrelation and correlation with unemployment. Almost all

measured narratives are persistent, and several among the Shiller and topic sets are pro- or

counter-cyclical. This observation is consistent with existing evidence in the literature on

the cyclicality of aggregate text-based measures of narratives (e.g., Shiller, 2020) and news

coverage (e.g., Baker, Bloom, and Davis, 2016; Bybee, Kelly, Manela, and Xiu, 2021).

However, our framework implies that it is challenging to interpret these basic time-series

facts for two reasons. First, it is difficult to disentangle the dual roles of narratives in driving

behavior versus describing fundamentals. In the next section, we will use cross-sectional

variation in narratives to isolate the impact on behavior.15 Second, without an understanding

of how narratives affect decisions and how decisions aggregate, it is difficult to understand

the macroeconomic implications of even desirable time-series variation in optimism. We will

later combine our macroeconomic model with our microeconomic evidence to evaluate the

business-cycle impact of aggregate variation in narratives quantitatively.

Cross-Sectional Properties. Our firm-level panel allows us to explore variation that

is more fine-grained than the time-series variation of Figure 1. We perform a variance

decomposition of each narrative variable by comparing the total variance of each variable

with the variance after removing means at the time, industry, industry-by-time, and firm

levels. In Appendix Table A5, we present the results in units of the fraction of variance

explained by each level of fixed effects, relative to the total. Time-series variation constitutes

a very small percentage of the total variation in our variables—only 1.1% for optimism, 0.2%

for the median Shiller narrative, and 3.5% for the median topic narrative. Adding industry-

specific trends increases these percentages, respectively, to only 6.7%, 8.7%, and 9.9%. The

vast majority of variation is therefore at the firm level.

4 Empirical Results

Moving beyond descriptive evidence, we now use our dataset of firm-level outcomes and

narrative loadings to test the two premises that narratives are decision-relevant and that

narrative spread is contagious and associative.

14In the Appendix, we report the time-series plot for Positive Sentiment, Negative Sentiment, and their
difference (Figure A1); all nine Shiller (2020) Perennial Economic Narratives (Figure A2); and all eleven
LDA topics that our later analysis identifies as relevant for hiring (Figure A3).

15In Table A28 we show that failing to control for aggregate time-series variation leads to an upward bias
in the impact of optimism on firms’ hiring, as predicted by the theory.

15



4.1 Testing Premise I: Narratives Are Decision-Relevant

Empirical Strategy. From the conceptual framework in Section 2 (see Equation 3 and

Proposition 6 in Appendix A.1), we have that firm hiring ∆ logLit can be described to first

order by the following regression equation:

∆ logLit =
∑
k∈K

δkλk,it + γi + χt + εit (11)

where the λk,it are firm-specific loadings on narratives indexed by k, γi is a fixed effect span-

ning static firm characteristics, χt is a fixed effect spanning aggregate conditions (including

both fundamentals and the distribution of narratives), and εit is a residual term arising from

idiosyncratic noise in individuals’ signals.

We first operationalize this by estimating the following regression equation relating hiring

to our optimism variable constructed in the 10-Ks:

∆ logLit = δOPoptit + γi + χj(i),t + τ ′Xit + εit (12)

Hiring and optimism are constructed as described in Section 3, at the level of firms and

fiscal years. We augment our theoretically implied specification (Equation 11) with controls,

including industry-by-time fixed effects and a suite of firm-level time-varying controls Xit

(current and past TFP, lagged labor, and financial variables). We later estimate analogs of

Equation 12 with other estimated narratives as independent variables.

Main Result: Optimism Drives Decisions. We present our estimates of Equation 12 in

Table 1. We first estimate the model with no additional controls beyond fixed effects and find

a point estimate of δ̂OP = 0.0355 with a standard error of 0.0030 (column 1). In column 2, we

add controls for current and lagged TFP, and lagged labor (log θ̂it, log θ̂i,t−1, logLi,t−1). These

controls proxy both for time-varying firm fundamentals and, to first order, the presence of

adjustment costs in labor.16 Our point estimate δ̂OP = 0.0305 (SE: 0.0030) is quantitatively

comparable to our uncontrolled estimate. To formalize this, in Appendix E.1 we report the

robustness of our estimate to selection on unobservables using the method of Oster (2019).

We find that our finding of a positive effect of optimism on hiring is robust by the benchmark

suggested by Oster (2019) (see Table A6).

In column 3, we add measures of firms’ financial characteristics, the (log) book-to-market

16In Appendix B.9, we show that the controls capture the impact of adjustment costs, to first order, for
a forward-looking firm that observes current productivity. This notwithstanding, to evaluate robustness to
the presence of richer adjustment dynamics, in Table A7, we control for up to three lags of productivity and
labor and our financial controls and continue to find a significant impact of optimism on hiring.
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Table 1: Narrative Optimism Predicts Hiring

(1) (2) (3) (4) (5)
Outcome is

∆ logLit ∆ logLi,t+1

optit 0.0355 0.0305 0.0250 0.0322 0.0216
(0.0030) (0.0030) (0.0032) (0.0028) (0.0037)

Firm FE X X X X
Industry-by-time FE X X X X X
Lag labor X X X X
Current and lag TFP X X X X
Log Book to Market X
Stock Return X
Leverage X
N 71,161 39,298 33,589 40,580 38,402
R2 0.259 0.401 0.419 0.142 0.398

Notes: For columns 1-4, the regression model is Equation 12 and the outcome is the log change in
firms’ employment from year t− 1 to t. The main regressor is a binary indicator for the optimistic
narrative, defined in Section 3.2. In all specifications, we trim the 1% and 99% tails of the outcome
variable. In column 5, the regression model is Equation 13, the outcome is the log change in firms’
employment from year t to t+1, and control variables are dated t+1. Standard errors are two-way
clustered by firm ID and industry-year.

ratio, last fiscal year’s log stock return (inclusive of dividends), and leverage (total debt over

total assets). These controls proxy for both Tobin’s q and firm-level financial frictions.

These controls are conservative in that they may absorb variation in both omitted firm

fundamentals and optimism itself. The point estimate remains positive and quantitatively

similar. In column 4, we estimate a specification with the controls from column 2 but no

firm fixed effects to guard against small-sample bias from strict exogeneity violations (Nickell,

1981) and find similar results.17

To test if optimism predicts (and does not merely describe) hiring, we finally estimate a

specification in which the outcome and control variables are time-shifted one year in advance:

∆ logLi,t+1 = δOP−1 optit + τ ′Xi,t+1 + γi + χj(i),t+1 + εi,t+1 (13)

where δOP−1 is the effect of lagged optimism on hiring and the (time-shifted) control variables

Xi,t+1 are those studied in column 2. In this specification, hiring takes place in fiscal year

t+ 1 after the filing of the 10-K at the end of fiscal year t. Our point estimate in column 5

17In Table A8, we report standard errors for the estimates of Table 1 under alternative schemes for
clustering standard errors.
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is similar in magnitude to our comparable baseline estimate (column 2).18

Robustness. As an alternative strategy to isolate plausibly exogenous variation in the

narratives considered by firms, we study the effects on hiring of changes in narratives induced

by plausibly exogenous CEO turnover. We provide the details in Appendix E.2. Specifically,

we estimate a variant of Equation 12 over firm-year observations corresponding to the death,

illness, or voluntary retirement of a CEO, as measured by Gentry, Harrison, Quigley, and

Boivie (2021). We find quantitatively similar effects of narrative optimism on hiring as those

reported in Table 1.

In the Appendix, we also report several additional results that probe the robustness of our

main specification. We summarize them briefly here. First, Figure A4 shows estimates of a

variant of our baseline regression interacting optimism with quartiles of firm characteristics.

We find that the effect of optimism is decreasing in capital intensity, essentially flat in market

capitalization, and U-shaped in the book-to-market ratio (i.e., high for both growth firms and

value firms). Second, Table A10 repeats the analysis of Table 1 with our conference-call-based

optimism measure, and finds similar results. Third, Table A11 repeats our main analysis

for different measured inputs—employment (the baseline), total variable input expenditure,

and investment—and demonstrates a positive and comparably sized effect of optimism on

all three. Thus, optimism expands operations uniformly across inputs. Finally, we have so

far studied the impact of binary optimism on hiring. To check if this construction drives our

results, in Figure A5 we re-create the regression models of the first three columns of Table 1

with indicators for each decile of the continuous sentiment measure. We find monotonically

increasing associations of hiring with higher bins of sentiment, implying that our binary

construction is not masking non-monotone effects of the continuous measure.19

Inspecting the Mechanism: Narrative Optimism Does Not Predict Future Pro-

ductivity Growth, Predicts Negative Stock Returns and Profitability. The coeffi-

cient of interest, δOP , measures the impact of optimism on hiring if optimism is uncorrelated

with any omitted fundamental factors that affect hiring. We have already demonstrated

that controlling for firm-level productivity, current labor employed, and financial variables

has minimal impact on the estimated value of δOP . Thus, any correlation between measured

optimism and measured contemporaneous and lagged fundamentals does not generate quan-

18In Table A9, we report results from our baseline regression Equation 12, using opti,t−1 as an instrument
for optit. This is robust to any identification concern arising from the simultaneous determination of optit and
∆ logLit, but estimates the original parameter δOP rather than δOP−1 . Our estimates are positive, statistically
significant, and larger than our baseline estimates.

19In Appendix E.4, we also check whether the effects of narrative optimism depend on the past level of
narrative optimism. We find that there are larger marginal effects on average for recently pessimistic firms,
but that this heterogeneity is quantitatively small.
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Figure 2: Dynamic Relationship of Optimism with Firm Fundamentals
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Notes: The regression model is Equation 14, and each coefficient estimate is from a different
regression. The outcomes are (a) the log change in TFP, calculated as described in Appendix
D.2, (b) the log stock return inclusive of dividends, and (c) changes in profitability, defined as
earnings before interest and taxes (EBIT) as a fraction of the previous fiscal year’s variable costs.
In all specifications, we trim the 1% and 99% tails of the outcome variables. Error bars are 95%
confidence intervals, based on standard errors clustered at the firm and industry-year level.

titatively significant omitted variables bias. But we have not yet systematically investigated

those correlations, or more formally explored whether measured optimism captures news

about future fundamentals.

To investigate these issues, we estimate projection regressions of firm-fundamentals Zit,

either TFP growth ∆ log θ̂it, log stock returns Rit, or changes in profitability ∆πit, on opti-

mism at leads and lags k:20

Zit = βk opti,t−k + γi + χj(i),t + εit (14)

For negative k, βk measures the relationship of current fundamentals with future optimism.

For positive k, βk measures the relationship of current fundamentals with past optimism.

We show our findings graphically in Figure 2, in which each point is a coefficient from

a separate estimation of Equation 14 and the error bars are 95% confidence intervals. For

k < 0, and all three outcome variables, we find evidence of βk > 0—that is, a firm doing

well today in terms of TFP growth, stock-market returns, and/or profitability is likely to

become optimistic in the future. However, for k > 0, and all three outcome variables, we

20We measure profitability as earnings before interest and taxes (EBIT) divided by the previous fiscal
year’s total variable costs (cost of goods sold (COGS) plus selling, general, and administrative expense
(SGA), minus depreciation).

19



find no positive association—that is, a firm doing well today was not on average optimistic

yesterday, or a firm that is optimistic today does not on average do better tomorrow. This

is consistent with our required exclusion restriction that our narrative measure of optimism

is non-fundamental, and it is inconsistent with a story in which optimism is driven by

news about fundamentals.21 We find, in sharp contrast, that optimistic firms have negative

stock returns and decreasing profitability in the future. This is consistent with our finding

that optimistic firms persistently increase input expenditure (column 5 of Table 1), but

see no increase in productivity (panel (a) of Figure 2). Figures A6 and A7 replicate this

analysis with conference-call-based optimism and the continuous measure of net sentiment,

respectively, and find similar results.22

This analysis focuses on real, rather than financial, fundamentals. In Figure A8, we in-

vestigate the relationship between narrative optimism, leverage, the capital structure, and

payout policy. We find that narrative optimism predicts higher leverage and higher borrow-

ing and has no effect on both equity issuance and payouts. Taken together, this provides

evidence that narrative optimism is associated with tighter, instead of looser, future financial

conditions. This is again inconsistent with a view that narrative optimism drives increases in

hiring because it is correlated with positive news about future firm-level financial conditions.

Inspecting the Mechanism: Narrative Optimism Predicts Optimistic Beliefs. In

our theoretical framework, optimistic narratives increase hiring by increasing firms’ expec-

tations about fundamentals. To test this mechanism, we investigate the relationship be-

tween narrative optimism and the extent to which firms make more optimistic forecasts. As

described in Section 3.1, we define GuidanceOptExPosti,t+1 and GuidanceOptExAntei,t+1

to indicate firms’ optimism at the beginning of fiscal year t + 1 relative to realized sales

and contemporaneous sales forecasts of equity analysts, respectively. For each variable

GuidanceOpti,t+1, we estimate the following regression model:

GuidanceOpti,t+1 = β optit + τ ′Xit + χj(i),t + εit (15)

The control variables Xit are current and lagged TFP and lagged labor, all in log units. As

we have guidance data for only a small subset of firms, we do not include firm fixed effects.

Our findings are reported in Table 2. For optimism relative to realizations, we find a pos-

itive correlation that increases when we add the aforementioned control variables (columns

21To further investigate the effects on stock prices, we also estimate the correlation of optimism with stock
returns near the 10-K filing date (Appendix Table A12). We find essentially no evidence of stock response
on or before the filing day, and weak evidence of positive returns (about 15-25 basis points) in the four days
after. The latter finding is consistent with those in Loughran and McDonald (2011).

22Jiang, Lee, Martin, and Zhou (2019) relatedly find that positive textual sentiment in firm disclosures,
by their own measure, predicts negative excess returns over the subsequent year.
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Table 2: Narrative Optimism Predicts Over-Optimistic Forecasts

(1) (2) (3) (4)
Outcome is

GuidanceOptExPosti,t+1 GuidanceOptExAntei,t+1

optit 0.0354 0.0561 0.0267 -0.000272
(0.0184) (0.0257) (0.0231) (0.0353)

Ind.-by-time FE X X X X
Lag labor X X
Current and lag TFP X X

N 3,817 2,159 3,044 1,718
R2 0.173 0.193 0.161 0.192

Notes: The regression model is Equation 15. The outcomes are binary indicators for whether sales
guidance was high relative to realized sales (columns 1 and 2) or high relative to contemporaneous
analyst forecasts (columns 3 and 4), as defined in Section 3.1. Standard errors are two-way clustered
by firm ID and industry-year.

1 and 2). This is consistent with the notion that firms producing an optimistic 10-K truly

hold optimistic views about firm performance. For optimism relative to analysts, we find an

imprecise positive effect in an uncontrolled model and a zero effect in the controlled model.

These findings are consistent with a story in which optimism is shared between management

and investors, potentially due to persuasion in communications.23,24

Given that we have found that guidance correlates with narrative optimism, it is natural

to ask if narrative optimism affects firm decisions conditional on guidance (and vice versa).

In Appendix E.3, we find that narrative optimism and measured expectations each have

predictive power conditional on the other for explaining hiring and capital investment. These

results suggest that textual optimism captures aspects of managers’ latent beliefs that are

not represented in traditional measurement of expectations (here, in guidance data).

The Narratives that Matter for Decisions. We now study the decision-relevance of

the measured Shiller (2020) and topic narratives. Specifically, for each of the two sets of

narratives, we estimate the regression equation implied by our theoretical framework:

∆ logLit =
∑
k∈K

δkλ̂k,it + γi + χj(i),t + τ ′Xit + εit (16)

23In Table A13, we re-estimate this relationship with alternative measurement schemes. We find a positive
relationship between ex post optimism and continuous sentiment, and an insignificant relationship between
binary or continuous narrative sentiment with the continuous difference between guidance and realized sales.

24Loughran and McDonald (2011) similarly find that, in Fama-MacBeth predictive regressions of stan-
dardized unexpected earnings, 10-K negativity predicts higher earnings surprises in the subsequent quarter.
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Table 3: Narratives Selected as Relevant for Hiring by LASSO

Shiller (2020) Chapters Topics
1. Labor-Saving Machines 1. Lease, Tenant, Landlord
2. Stock Bubbles 2. Business, Public, Combination

3. Value, Fair, Loss
4. Advertising, Retail, Brand
5. Financial, Control, Internal
6. Stock, Compensation, Tax
7. Gaming, Service, Network
8. Debt, Credit, Facility
9. Reorganization, Bankruptcy, Plan
10. Court, Settlement, District
11. Technology, Revenue, Development

Notes: Each column lists the narrative variables chosen as relevant regressors in a Rigorous Square-
Root LASSO (Belloni, Chernozhukov, Hansen, and Kozbur, 2016) estimation of Equation 16, with
the baseline controls as unpenalized regressors. The Shiller (2020) chapters are named for the title
of the corresponding book chapter. The topics are named after the three highest-weight bigrams.
The corresponding post-LASSO estimates are reported in Table A14.

We use our baseline controls, current and lagged TFP and lagged labor. Because we have

many candidate narratives (9 and 100, respectively), and we expect only a few to matter

for decisions, we apply the Rigorous Square-Root LASSO method of Belloni, Chen, Cher-

nozhukov, and Hansen (2012) and Belloni, Chernozhukov, Hansen, and Kozbur (2016) to

estimate the subset of hiring-relevant narratives. In Table 3, we list the selected Shiller (2020)

and topic narratives. In Appendix Table A14, we report the post-LASSO OLS estimates of

Equation 16 with the selected variables.

Among the Shiller (2020) Perennial Economic Narratives, the LASSO methodology se-

lects two of nine as quantitatively relevant for hiring: “Labor-Saving Machines” and “Stock

Bubbles.” Among the unsupervised topics, the LASSO methodology selects eleven variables

out of 100. In Table A14, we present these topics in the (essentially random) order they

come out of our LDA exercise and identify them by their three highest-weight bigrams (in

all cases, single words).25 Ex post, based on their word combinations, we identify two as

relating to demand conditions (Topics 4 and 7); two related to legal proceedings (Topics 9

and 10); one related to technology development (Topic 11); one related to real estate (Topic

1); and the remaining five related to financial conditions.

Are these selected narratives reasonable? For the Perennial Economic Narratives, we

25Appendix Table A3 prints the top ten words per topic and their numerical weights.
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observe that “The Gold Standard” and “Boycotts and Evil Businesses” describe episodes in

history that are unlikely to be relevant over our sample. Our results are therefore consistent

with this “placebo test.” There are no analogous tests for the topics, which pertain to

the sample period by construction. Instead, we test if topics that seem to describe specific

decisions are relevant for those decisions. Concretely, using analogs of Equation 12 to predict

other firm-level decisions, we find that the “Advertising, Retail, Brand” narrative predicts

SG&A expenditure growth (δ = 0.0076, SE: 0.0022) and that the “Technology, Revenue,

Development” narrative predicts growth in R&D spending (δ = 0.0402, SE: 0.0044).

Going further, we examine the relationship of the selected Shiller and topic narratives

with narrative optimism in two ways. First, we study if optimism has different effects when it

coincides with more intense discussion of other narratives. To do this, for each of the thirteen

hiring-relevant Shiller and topic narratives, we take our baseline regression (Equation 12)

with controls for lagged labor and current and lagged TFP and add both the non-optimism

narrative and its interaction with optimism. Out of our thirteen estimated regressions, the

smallest p-value for an interaction coefficient that is different from zero is 0.039. Applying

a Bonferroni correction for multiple hypothesis testing, we would not reject the null that all

interactions are zero at any significance level less than 50%. Thus, we find limited evidence

that optimism acts differently when it interacts with other, more specific narratives.

Given the irrelevance of the interaction between optimism and more specific narratives, we

next consider the possibility that these narratives form a basis for narrative optimism: that

is, emergent overall optimism is driven by discussion of more specific narratives. We estimate

the following system of equations in which we treat optimism as an endogenous variable and

the LASSO-selected Shiller and topic narratives (in sets K∗S and K∗T ) as instruments:

∆ logLit = δOPoptit + γi + χj(i),t + τ ′Xit + εit

optit =
∑
k∈K∗S

δSkShillerkit +
∑
k∈K∗T

δTktopickit + γ̃i + χ̃j(i),t + τ̃ ′X̃it + ε̃it
(17)

where Xit are, again, our baseline controls. We provide coefficient estimates for Equation

17 in column 4 of Appendix Table A14. The Shiller and topic narratives strongly predict

optimism (F = 189), and our IV estimate of a 0.0597 log-point effect of optimism on hiring

is larger than our baseline estimate of 0.0305.

4.2 Testing Premise II: Contagious and Associative Spread

Empirical Strategy. From the conceptual framework in Section 2 (see Equation 5 and

Proposition 7 in Appendix A.1), we have that narrative updating is described by a system
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of linear probability models that depend on agents’ previous narrative weights, the previous

narrative weights of the population, and economic outcomes.

To operationalize this idea in the context of our measured binary optimism, we first

estimate the following model:

optit = u opti,t−1 + s optt−1 + r ∆ log Yt−1 + γi + εit (18)

where optt−1 is average optimism in the previous period, ∆ log Yt−1 is US real GDP growth,

and γi is an individual fixed effect. Following our earlier interpretation, u measures stub-

bornness, s measures contagiousness, and r measures associativeness.

Main Result: Optimism Spreads Contagiously and Associatively. In column 1 of

Table 4, we show our estimates. We find strong evidence of u > 0, s > 0, and r > 0—that

is, firms are significantly more likely to be optimistic in year t if, in the previous year, they

were optimistic, if other firms were optimistic, and if the economy grew.

Our estimation of Equation 18 levers only the time-series variation over our studied

23-year period. We therefore also study a model that allows for contagiousness and associa-

tiveness at the finer levels of our 44 industries and our firm-specific peer groups. Specifically,

we estimate the equation:

optit = uind opti,t−1 + sind optj(i),t−1 + speer optp(i),t−1 + rind ∆ log Yj(i),t−1 +γi +χt + εit (19)

where optj(i),t−1 and optp(i),t−1 are (leave-one-out) means of optimism among a firm’s industry

and peer set, respectively, and ∆ log Yj(i),t−1 is the growth of sectoral value-added measured

by linking Bureau of Economic Analysis (BEA) sector-level data to our NAICS-based clas-

sification.26 The time fixed effect χt absorbs aggregate contagiousness and associativeness.

We show the results in columns 2 and 3 of Table 4. First, using just the industry-level

data, we find strong evidence for contagiousness and weaker evidence for associativeness

within industries. Second, including the peer set optimism and restricting to the much

smaller number of NYSE-listed firms, we find both a quantitatively similar industry-level

effect and an independent peer-set effect. Moreover, the sum of coefficients sind + speer,

the marginal effect of optimism in both the industry and peer set, is positive and strongly

significant (estimate 0.243, standard error 0.075). In Table A16, we report evidence of

stubbornness, contagiousness, and associativeness with the continuous measure of sentiment

and find consistent results, suggesting that our qualitative findings are not unduly sensitive

to variable construction.27

26These data are available only from 1997.
27In Table A15, we report standard errors for Table 4 under alternative clustering.
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Table 4: Narrative Optimism is Contagious and Associative

(1) (2) (3)
Outcome is optit

Own lag, opti,t−1 0.209 0.214 0.135
(0.0071) (0.0080) (0.0166)

Aggregate lag, optt−1 0.290
(0.0578)

Real GDP growth, ∆ log Yt−1 0.804
(0.2204)

Industry lag, optj(i),t−1 0.276 0.207
(0.0396) (0.0733)

Industry output growth, ∆ log Yj(i),t−1 0.0560 0.0549
(0.0309) (0.0632)

Peer lag, optp(i),t−1 0.0356
(0.0225)

Firm FE X X X
Time FE X X
N 64,948 52,258 8,514
R2 0.481 0.501 0.501

Notes: The regression model is Equation 18 for column 1, and Equation 19 for columns 2 and 3.
Aggregate, industry, and peer average optimism are averages of the narrative optimism variable over
the respective sets of firms. Industry output growth is the log difference in sectoral value-added
calculated from BEA data, linked to two-digit NAICS industries. Standard errors are two-way
clustered by firm ID and industry-year.

Inspecting the Mechanism: Spillovers are Not Driven by Common Shocks. The

coefficients of interest, u, r, and s identify stubbornness, contagiousness, and associativeness,

when idiosyncratic optimism, aggregate optimism, and GDP are unrelated to other factors

that affect changes in optimistic sentiment at the firm level. By using lagged aggregate

optimism, our estimates are not threatened by the reflection problem of Manski (1993).

Nevertheless, our estimates may be contaminated by omitted variables bias because aggregate

optimism is correlated with common shocks to the economy that are in the error term.

To test for this possibility, we augment our previous regressions to include controls for

past and future fundamentals in the form of two leads and lags of real value-added growth at

the aggregate and sectoral levels as well as firm-level TFP growth. Specifically, we estimate

optit = u opti,t−1 + s optt−1 + γi+

+
2∑

k=−2

(
ηagg
k ∆ log Yt+k + ηind

k ∆ log Yj(i),t+k + ηfirm
k ∆ log θi,t+k

)
+ εit

(20)
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Table 5: Narrative Optimism is Contagious, Controlling for Past and Future Outcomes

(1) (2) (3) (4) (5) (6) (7)
Outcome is optit

Aggregate lag, optt−1 0.290 0.339 0.235 0.222
(0.0578) (0.0763) (0.1278) (0.2044)

Ind. lag, optj(i),t−1 0.276 0.241 0.262

(0.0396) (0.0434) (0.0705)

Firm FE X X X X X X X
Time FE X X X
Own lag, opti,t−1 X X X X X X X
(∆ log Yt+k)

2
k=−2 X X X

(∆ log Yj(i),t+k)
2
k=−2 X X X X

(∆ log θ̂i,t+k)
2
k=−2 X X

N 64,948 49,631 38,132 13,272 52,258 38,132 13,272
R2 0.481 0.484 0.497 0.543 0.501 0.498 0.545

Notes: The regression model is Equation 20 for columns 1-4, and an analogous industry-level
specification for columns 5-7 (i.e., Equation 19 with past and future controls). Columns 1 and 5
are “baseline estimates” corresponding, respectively, with columns 1 and 3 of Table 4. The added
control variables are two leads, two lags, and the contemporaneous value of: real GDP growth
(columns 2-4), industry-level output growth (columns 3-4 and 6-7), and firm-level TFP growth
(columns 4 and 7). Standard errors are two-way clustered by firm ID and industry-year.

We estimate an analogous specification at the industry level, but with the aggregate leads

and lags absorbed. If common positive shocks to the economy and sectors were driving some

or all of the estimated spillovers, we would expect to find a severely attenuated estimate of

the contagiousness coefficient s. Even under our interpretation, future output growth could

be a “bad control” that is caused by optimism and absorbs some of its effect.

We report our estimates of the contagiousness coefficients in Table 5, adding the “bad

controls” one at a time. In column 2 we find that instead of attenuating ŝ, controlling

for past and future aggregate fundamentals in fact slightly increases the original point es-

timate reported in column 1 (within one standard error of the original value). In columns

3 and 4, when we additionally control for sectoral-level value-added growth and firm-level

TFP growth, the point estimates drop slightly while standard errors increase significantly.

Similarly, for our industry-level estimates, we find no statistically significant evidence of co-

efficient attenuation as additional controls are added (columns 5 to 7). In Table A17, we

report analogous estimates with the continuous sentiment variable and find similar results.

Taken together, these estimates build confidence that our baseline contagiousness results are

not driven by omitted aggregate shocks.

To further test whether our measure of contagiousness captures spillovers, and not omit-
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ted common shocks, we pursue two additional instrumental variables strategies. First, in

Appendix E.2, we use spillovers from the same plausibly exogenous CEO changes to con-

struct instruments for industry and peer-set optimism. We find similar point estimates as

in our main analysis. Second, in Appendix E.5, we use size-weighted idiosyncratic shocks to

firm-level optimism as an instrument for aggregate size-weighted optimism (a granular IV à

la Gabaix and Koijen, 2020). While not comparable to our main estimates as the measure

of spillovers is different, we recover a statistically significant contagiousness effect.

The Spread of Hiring-Relevant Narratives. We repeat the estimation of our equation

measuring aggregate associativeness and contagiousness, Equation 18, for the other thirteen

narratives that are selected by our LASSO procedure as relevant for hiring. To allow for

the greatest comparability with our estimates for optimism, we transform these narrative

loadings into binary indicators for being above the sample median. We present our estimates

of u, r, and s in the three panels of Appendix Figure A9. We find significant evidence of

stubbornness, or u > 0, in each case and significant evidence of contagiousness, or s > 0, in

all but two cases. We find some evidence of associativeness (r 6= 0) for certain narratives,

with “Lease, Tenant, Landlord” (relating to real estate), “Debt, Credit, Facility” (relating to

financial conditions and leverage), and “Reorganization, Bankruptcy, Plan” (relating to firm

restructuring) having r < 0, and “Court, Settlement, District” (relating to legal proceedings),

“Business, Public, Combination” (relating to firm origination), and “Technology, Revenue,

Development” (relating to R&D) having r > 0. In Appendix Table A18, we instrument for

optimism with the other 13 hiring-relevant narratives in the estimation of Equations 18 and

19. We find similar point estimates to our baseline analysis that are suggestive of increased

contagiousness.

To assess whether these findings are consistent with our earlier findings about decision

relevance, we can test whether the sign and magnitude of associativeness line up across

narratives with the sign and magnitude of the hiring effect. That is, do narratives that

increase firm hiring also spread more when the economy is growing? While our theory does

not impose such a restriction, it might be a natural consequence of the unmodeled process by

which narratives pick up associations with aggregate outcomes. In Figure A10, we plot the

associativeness coefficients for each narrative (including optimism) against the effect of the

corresponding binary variable on hiring. Consistent with our hypothesis, the relationship is

upward-sloping, with optimism itself in the top-right corner (with the second-highest hiring

effect and highest associativeness).
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5 A Narrative Business-Cycle Model

To study the implications of narratives for macroeconomic dynamics, we now specialize

our abstract framework and develop a microfounded business-cycle model that embeds the

decision-relevance, contagiousness, and associativeness of narratives.

5.1 Technology and Preferences

The consumption, production, and labor supply side of the model is intentionally standard

and is a purely real variant of the models described in Woodford (2003) and Gaĺı (2008). Time

is discrete and infinite, indexed by t ∈ N. There is a continuum of monopolistically compet-

itive intermediate goods firms of unit measure, indexed by i, and uniformly distributed on

the interval [0, 1]. Intermediate goods firms have idiosyncratic (Hicks-neutral) productivity

θit. They hire labor Lit monopsonistically at wage wit to produce a differentiated variety in

quantity xit that they sell at price pit according to the production function:

xit = θitL
α
it (21)

where α ∈ (0, 1] describes returns-to-scale in production.

A final goods firm competitively produces aggregate output Yt by using a constant elas-

ticity of substitution (CES) production function:

Yt =

(∫
[0,1]

x
ε−1
ε

it di

) ε
ε−1

(22)

where ε > 1 is the elasticity of substitution between varieties.

A representative household consumes final goods Ct and supplies labor {Lit}i∈[0,1] to the

intermediate goods firms with isoelastic, separable, expected discounted utility preferences:

U
(
{Ct, {Lit}i∈[0,1]}t∈N

)
= E0

[
∞∑
t=0

βt

(
C1−γ
t

1− γ −
∫

[0,1]

L1+ψ
it

1 + ψ
di

)]
(23)

where γ ∈ R+ indexes the size of income effects in the household’s supply of labor and

ψ ∈ R+ indexes their inverse Frisch labor supply elasticity to each firm.

Finally, we define the composite parameter:

ω =
1
ε
− γ

1+ψ−α
α

+ 1
ε

(24)
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which indexes the strength of strategic complementarity. So that complementarity is positive

but not so extreme that the model features multiple equilibria, we assume that ω ∈ [0, 1).

This requires that income effects in labor supply do not overwhelm aggregate demand ex-

ternalities and that these externalities are not too large.

5.2 Narratives and Beliefs

Firm productivity θit is comprised of a common, aggregate component θt, an idiosyncratic

time-invariant component γi, and an idiosyncratic time-varying component θ̃it:

θit = θ̃itγiθt (25)

Firms know that log γi ∼ N(µγ, σ
2
γ), know their own value of γi, and believe that log θ̃it ∼

N(0, σ2
θ̃
) and independently and identically distributed (IID) across firms and time. As in

Angeletos and La’O (2010, 2013), firms receive idiosyncratic Gaussian signals about log θt

with noise eit ∼ N(0, σ2
e) that is IID across firms and time: sit = log θt + eit.

As in the conceptual framework from Section 2, and unlike in previous work, narratives

form a common factor structure of agents’ prior beliefs about the aggregate component of

productivity θt. To best fit our main empirical analysis, we suppose that there are two

competing narratives: an optimistic narrative and a pessimistic narrative. According to

each narrative, the aggregate component of productivity follows:

log θt ∼ N(µ, σ2) (26)

where µ = µP under the pessimistic narrative and µ = µO > µP under the optimistic

narrative. Both of these narratives are potentially misspecified, and the true distribution for

fundamentals is given by H. In Appendix B.4, we study a variant model in which narratives

pertain to beliefs about idiosyncratic productivity and show that our analysis is unchanged.

Firms either believe the optimistic narrative or the pessimistic narrative. Hence, each

firm’s prior belief regarding the fundamental can be described as:

πit(λit) = N
(
λitµO + (1− λit)µP , σ2

)
(27)

where λit ∈ {0, 1}, λit = 1 corresponds to a firm believing in the optimistic narrative, and

λit = 0 corresponds to a firm believing in the pessimistic narrative. We let Qt =
∫

[0,1]
λit di

correspond to the fraction of optimists in the population, which agents observe each period.
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5.3 Narrative Evolution

To describe the evolution of narratives, we need to describe the probability that optimists

remain optimistic, PO, and the probability that pessimists become optimistic, PP . We

specify that both probabilities depend on aggregate output Yt, the fraction of optimists in

the population Qt, and an aggregate narrative shock to how agents update εt, which has

distribution G. Hence, the fraction of optimists evolves according to:

Qt+1 = QtPO(log Yt, Qt, εt) + (1−Qt)PP (log Yt, Qt, εt) (28)

This aggregates the behavior of individual firms’ narrative updating. As we found that

narratives spread associatively and contagiously (Section 4.2), we assume that PO and PP

are both increasing functions. As we found that firms are stubborn, or that optimism is

persistent at the firm level, we assume that PO ≥ PP . As associativeness and contagiousness

do not explain all narrative updating, we add narrative shocks to the probabilities that

optimists and pessimists update. Finally, for technical reasons, we assume that PO and PP

are continuous and almost everywhere differentiable.

These conditions, motivated by the data, rule out some models for how individual firms

update their beliefs. An important such model that is ruled out is one in which firms observe

aggregate variables log Yt and Qt and use Bayes’ rule to update their beliefs over models.

As we formalize in Appendix B.1, this “Bayesian benchmark” rules out dependence of firms’

updating on Qt and εt conditional on log Yt (respectively, contagiousness and shocks). More-

over, this “Bayesian benchmark” predicts that agents converge to holding the better-fitting

empirical model exponentially quickly, which is at odds with our finding of cyclical dynamics

for aggregate optimism (Figure 1). However, richer Bayesian models that are consistent with

our empirical results can be nested by our reduced-form updating probabilities.

To illustrate our results, obtain closed-form expressions, and exactly match our regres-

sions and quantitative model, we will study the following updating probabilities throughout:

Main Case (Linear-Associative-Contagious Updating Probabilities). The linear-associative-

contagious (LAC) specification for updating probabilities sets:

PO(log Y,Q, ε) =
[u

2
+ r log Y + sQ+ ε

]1

0

PP (log Y,Q, ε) =
[
−u

2
+ r log Y + sQ+ ε

]1

0

(29)

where [z]10 = max{min{z, 1}, 0}, u ≥ 0 indexes stubbornness, r ≥ 0 indexes associativeness,

and s ≥ 0 indexes contagiousness. 4
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5.4 Equilibrium

An equilibrium is a path for all variables:

E =
{
Yt, Ct, Qt, θt, εt, {Lit, xit, pit, wit, λit, sit, θ̃it}i∈[0,1]

}
t∈N

(30)

such that (i) narrative weights λit follow a Markov process consistent with Equation 28 given

Qt and Yt, (ii) xit maximizes intermediate goods firms’ expected profits given their narrative

weights λit, signal sit, and knowledge of E , (iii) Lit is consistent with production technology

(Equation 21) given xit and θ̃it, (iv) prices pit are consistent with profit maximization by

the final goods firm, (v) wages wit clear the labor market for each firm, (vi) Yt aggregates

intermediate good production according to Equation 22, (vii) Ct satisfies goods market

clearing, Ct = Yt, and (viii) Qt evolves according to Equation 28.

6 Theoretical Results

We now study the equilibrium dynamics of narratives and output. We find that narratives

induce non-fundamental fluctuations in the economy and have the potential to generate

hysteresis. Moreover, we show that our empirical estimates identify the model. We use this

mapping to the data to quantify and test the model’s predictions in Section 7.

6.1 Characterizing Equilibrium Dynamics

To solve for equilibrium production, it suffices to solve for intermediates goods production.

These firms maximize expected profits, as priced by the representative household:

Πit = Eit[C−γt (pitxit − witLit)] (31)

where C−γt is the (unnormalized) stochastic discount factor that converts the profits of the

firm into their marginal value to the household. The intermediate goods firm acts as a

monopolist in the product market and a monopsonist in the labor market.

We first solve for the demand curve faced by the intermediates goods firms. The final

goods firm maximizes profits taking as given the prices set by intermediates goods firms.

This implies the following constant-price-elasticity demand curve:

pit = Y
1
ε
t x
− 1
ε

it (32)

Increases in aggregate output shift out this demand curve via aggregate demand externalities.
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Second, we solve for the wage schedule faced by the intermediate goods firm. When facing

a wage wit, the intratemporal Euler equation of the representative household implies that

labor supply is given by:

Lψit = witC
−γ
t (33)

Third, given the production technology of the firm, when it commits to producing xit, its

implied labor input is given by:

Lit = θ
− 1
α

it x
1
α
it (34)

Finally, by imposing goods market clearing Ct = Yt and substituting Equations 32, 33, and

34 into Equation 31, we obtain that the intermediates goods firms solve the following profit

maximization problems:

max
xit

Eit
[
Y −γt

(
Y

1
ε
t x

1− 1
ε

it − Y γ
t θ
− 1+ψ

α
it x

1+ψ
α

it

)]
(35)

By the first-order condition of this program, we have that optimal production solves:(
1− 1

ε

)
Eit
[
Y

1
ε
−γ

t

]
x
− 1
ε

it =
1 + ψ

α
Eit
[
θ
− 1+ψ

α
it

]
x

1+ψ−α
α

it (36)

where the left-hand side is the marginal expected revenue of the firm from expanding produc-

tion and the right-hand side is the marginal expected cost of this expansion. In this equation,

a given firm’s narrative affects their expected marginal costs of production, via the expecta-

tion of idiosyncratic productivity, and their expected marginal benefits of production, via the

expectation of aggregate output (which encompasses aggregate demand externalities, asset

pricing forces, and wage pressure). Moreover, in equilibrium, the distribution of narratives

in the population affects the level of aggregate output and agents’ expectations thereof.

We now take logarithms of all variables, and substitute this best reply into the production

function of the final goods firm. From this, we obtain that the static equilibrium of the model

is characterized by the solution to the following fixed-point equation:

log Yt =
ε

ε− 1
logEt

[
exp

{
ε−1
ε

1+ψ−α
α

+ 1
ε

(
log

(
1− 1

ε
1+ψ
α

)

− logEit
[
exp

{
−1 + ψ

α
log θit

}]
+ logEit

[
exp

{(
1

ε
− γ
)

log Yt

}])}] (37)

where the outer expectation operator integrates over the realizations of productivity shocks

(θ̃it, γi), narrative loadings λit, and signals sit.

By employing a functional guess-and-verify argument, we obtain that the model has
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a unique quasi-linear equilibrium in which log output depends linearly on log aggregate

productivity and non-linearly, but separably, on the fraction of optimists in the population:

Proposition 1 (Equilibrium Characterization). There exists a unique equilibrium such that:

log Y (log θt, Qt) = a0 + a1 log θt + f(Qt) (38)

for some coefficients a0 and a1 > 0, and a strictly increasing function f .

Proof. See Appendix A.2

Remark 1. This result claims uniqueness only within the quasi-linear class. As best replies

and aggregation are non-linear and the spaces of actions and fundamentals are not com-

pact, one cannot use classical arguments to ensure that the fixed point operator implicit in

Equation 37 is a contraction. Nevertheless, in Appendix A.2, we show that there is a unique

equilibrium when fundamentals are restricted to lie in a compact set (Lemma 2). Moreover,

the claimed quasi-linear equilibrium is an ε−equilibrium for any ε > 0 for some sufficiently

large support for fundamentals (Lemma 3). Hence, the quasi-linear equilibrium we study is

the limit of the unique equilibrium with bounded fundamentals as the bound becomes large.

This justifies our restriction in analyzing this class of equilibrium. 4

Narratives Drive Non-Fundamental Fluctuations in Aggregate Output. The co-

efficient a1 and function f respectively describe how fundamentals and optimism drive ag-

gregate output. In the proof of Proposition 1, we derive these objects as functions of the

macroeconomic parameters (ε, ψ, γ, α), the signal-to-noise ratio of agents’ signals about pro-

ductivity κ, and the extent of mean differences in the priors of optimists and pessimists

µO − µP . The effect on output from going from full pessimism to full optimism is given by

f(1) =
αδOP

1− ω (39)

where δOP is the average partial equilibrium effect of a firm being optimistic on hiring,

the returns-to-scale parameter α converts this into the effect on production, and 1
1−ω is the

general equilibrium multiplier of this effect.

The role of optimism in equilibrium has two subtle properties. First, the effect of op-

timism on output, f(Q), is non-linear. The non-linearity arises from the fact that firms’

heterogeneous priors induce heterogeneity in production conditional on productivity and

hence also misallocation. Second, there is an equilibrium multiplier for optimism due to

demand externalities. In particular, even a pessimistic firm will produce more if a large

fraction of other firms is optimistic, as this optimism increases aggregate demand.
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Identification of Model Parameters. We now show how our empirical strategy identi-

fies the aggregate behavior of output and optimism.

Corollary 1 (Identification of Model Parameters). In equilibrium, firms’ hiring decisions

obey the following equation:

∆ logLit = c0,i + c1 log θt + c2f(Qt) + c3 log θit + c4 logLi,t−1 + δOPλit + ζit (40)

where ζit is an IID normal random variable with zero mean. Thus, conditional on (α, ε, γ, ψ),

δOP uniquely identifies f , the equilibrium effect of optimism on aggregate output.

Proof. See Appendix A.4.

This clarifies the exact interpretation of our regression model for hiring, Equation 12,

in the model. The general-equilibrium effect of optimism on hiring, c2f(Qt), was absorbed

in the regression equation as a time fixed effect. As we previously discussed, aggregate

fundamentals also appear in the time fixed effect of the regression. These facts highlight

formally the necessity of combining cross-sectional variation and some structural model for

general-equilibrium interaction to identify the effect of optimism on economic outcomes.

The Dynamics of Optimism. Finally, using Proposition 1, we express the dynamics of

the economy as a first-order nonlinear stochastic difference equation for aggregate optimism:

Corollary 2 (Characterization of Dynamics). Optimism evolves according to the following

stochastic, nonlinear first-order difference equation Qt+1 = T (Qt, νt), where νt = (log θt, εt)

and

T (Qt, νt) = QtPO(a0+a1 log θt+f(Qt), Qt, εt)+(1−Qt)PP (a0+a1 log θt+f(Qt), Qt, εt) (41)

Proof. See Appendix A.5

6.2 Dynamics: Steady-State Multiplicity and Hysteresis

We next characterize the steady states of optimism and their stability, for fixed aggregate

fundamentals. This analysis highlights how associative, contagious optimism affects dynam-

ics even in the absence of shocks.

Steady-State Characterization. Let T be the equilibrium transition map from Corollary

2 and Tθ(Q) = T (Q, θ, 0) be the map for a fixed value of aggregate productivity when there

is no narrative shock. A level of optimism Q∗θ is a deterministic steady state for level of

productivity θ if it is a fixed point of the corresponding map, Tθ(Q
∗
θ) = Q∗θ. The following
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result establishes that a deterministic steady state always exists and provides necessary and

sufficient conditions for extreme optimism and pessimism to be (stable) steady states.

Proposition 2 (Steady State Existence, Multiplicity, and Stability). The following state-

ments are true:

1. There exists a deterministic steady-state level of optimism for every θ ∈ Θ

2. There exist thresholds θP and θO such that: Q = 0 is a deterministic steady state for

θ if and only if θ ≤ θP and Q = 1 is a deterministic steady state for θ if and only if

θ ≥ θO. Moreover, these thresholds are given by:

θP = exp

{
P−1
P (0; 0)− a0

a1

}
and θO = exp

{
P−1
O (1; 1)− a0 − f(1)

a1

}
(42)

where P−1
P (x;Q) = sup{Y : PP (Y,Q, 0) = x} and P−1

O (x;Q) = inf{Y : PO(Y,Q, 0) =

x}.28

3. Extreme pessimism is stable if θ < θP and PO(P−1
P (0; 0), 0, 0) < 1 and extreme optimism

is stable if θ > θO and PP (P−1
O (1; 1), 1, 0) > 0.

Proof. See Appendix A.6.

This result establishes conditions under which extreme optimism and pessimism can be

stable steady states. These conditions can be checked with only a few parameters: the

responsiveness of output to productivity a1, its baseline level a0, the impact of all agents

being optimistic on output f(1), the highest level of output such that all pessimists remain

pessimistic when everyone is a pessimist P−1
P (0; 0), and the lowest level of output such that

all optimists remain optimistic when all other agents are optimists P−1
O (1; 1).

Hysteresis. Proposition 2 demonstrates the possibility for hysteresis: multiple steady

states of optimism that are entirely self-fulfilling. Thus, differing initial conditions of narra-

tives in the population can lead to differing steady-state levels of narrative penetration and

therefore output. The following corollary characterizes exactly when this can happen:

Corollary 3 (Characterization of Extremal Multiplicity). Extreme optimism and pessimism

are simultaneously deterministic steady states for θ if and only if θ ∈ [θO, θP ], which is non-

empty if and only if

P−1
O (1; 1)− P−1

P (0; 0) ≤ f(1) (43)

Proof. See Appendix A.7

28With the convention that the infimum of an empty set is +∞ and the supremum of an empty set is −∞.
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Figure 3: Illustration of Steady States and Dynamics Under the SSC Property
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Notes: In each subfigure, the solid line is an example transition map Tθ, the dashed line is the
45-degree line, the dotted vertical line indicates the interior steady state Q̂θ, and the red arrows
indicate the dynamics. The subfigures respectively correspond to SSC-A (“strict single crossing
from above”) and SSC-B (“strict single crossing from below”), as defined in the text.

To gain intuition for these results, and to derive a parametric condition for hysteresis that

we will later empirically assess, we compute these conditions in our running LAC model:

Main Case (continuing from p. 30). In the LAC special case, we can compute the sufficient

statistics for narrative updating analytically. In particular, we have that extreme optimism

and pessimism can coexist if and only if:

M = u+ s+ rf(1)− 1 ≥ 0 (44)

which is to say that stubbornness, associativeness, contagiousness, and the equilibrium im-

pact of optimism on output are sufficiently large. In Section 7.3, we will empirically assess

this condition and its quantitative implications in our calibration. 4

To say more, we restrict attention to two important subclasses of updating rules that

satisfy a natural single-crossing condition. We say that T is strictly single-crossing from above

(SSC-A) if for all θ ∈ Θ there exists Q̂θ ∈ [0, 1] such that Tθ(Q) > Q for all Q ∈ (0, Q̂θ)

and Tθ(Q) < Q for all Q ∈ (Q̂θ, 1). We say that T is strictly single-crossing from below

(SSC-B) if for all θ ∈ Θ there exists Q̂θ ∈ [0, 1] such that Tθ(Q) > Q for all Q ∈ (Q̂θ, 1) and

Tθ(Q) < Q for all Q ∈ (0, Q̂θ). If T is either SSC-A or SSC-B, we say that it is SSC. The

left and right panels of Figure 3 illustrate examples of SSC-A and SSC-B transition maps as

black solid lines.
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Lemma 1 (Steady States under the SSC Property). If Tθ is SSC, then there exist at most

three deterministic steady states. These correspond to extreme pessimism Q = 0, extreme

optimism Q = 1, and intermediate optimism Q = Q̂θ. Moreover, when Tθ is SSC-A: in-

termediate optimism is stable with a basin of attraction that includes (0, 1); and whenever

extreme optimism or extreme pessimism are steady states that do not coincide with Q̂θ, they

are unstable with respective basins of attraction {0} and {1}. When Tθ is SSC-B: whenever

extreme optimism is a steady state, it is stable with basin of attraction (Q̂θ, 1]; whenever ex-

treme pessimism is a steady state it is stable with basin of attraction [0, Q̂θ); and intermediate

optimism is always unstable with basin of attraction {Q̂θ}.

Proof. See Appendix A.8

In the SSC-A case there is a unique, (almost) globally stable steady state (left panel of

Figure 3). In the SSC-B class, there exists a state-dependent criticality threshold Q̂θ ∈ [0, 1],

below which the economy converges to extreme, self-fulfilling pessimism and above which

the economy converges to extreme, self-fulfilling optimism (right panel of Figure 3). These

two classes delineate two qualitatively different regimes for narrative dynamics: one with

stable narrative convergence around a long-run steady state (SSC-A) and one with a strong

role for initial conditions and hysteresis (SSC-B).

To understand the determinants of this criticality threshold, we study our LAC model:

Main Case (continuing from p. 30). The LAC model satisfies SSC-B if u, r, and s are suffi-

ciently large and θ ∈ (θO, θP ). Moreover, in the SSC-B case, the criticality threshold is given

by the unique solution to the equation:

Q̂θ =
u

2
(2Q̂θ − 1) + sQ̂θ + r(a0 + a1 log θ + f(Q̂θ)) (45)

Thus, under the approximation that f(Q) ≈ kQ, we have that:

Q̂θ ≈
u
2
− r(a0 + a1 log θ)

u+ s+ rk − 1
(46)

Hence, greater contagiousness, associativeness, and decision relevance make the criticality

threshold lower and therefore make it easier for an epidemic of extreme optimism to take

hold. 4

6.3 Impulse Responses and Stochastic Fluctuations

Having characterized narrative dynamics with fixed fundamentals, we now study how the

economy responds to deterministic and stochastic fundamental and narrative shocks. For
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this analysis, we restrict attention to the SSC class, noting that this is an assumption solely

on primitives.29

Hump-Shaped and Discontinuous Impulse Responses. We consider the responses of

aggregate output and optimism in the economy to a one-time positive shock to fundamentals

from a steady state corresponding to θ = 1:

θt =


1, t = 0,

θ̂, t = 1,

1, t ≥ 2.

(47)

where θ̂ > 1. We would like to understand when the impulse response to a one-time shock

is hump-shaped, meaning that there exists a t̂ ≥ 2 such that Yt is increasing for t ≤ t̂ and

decreasing thereafter. Moreover, we would like to understand how big a shock needs to be

to send the economy from one steady state to another, as manifested as a discontinuity in

the IRFs in the shock size θ̂.

In the SSC-A case, IRFs are continuous in the shock but can nevertheless display hump-

shaped dynamics as a result of the endogenous evolution of optimism.

Proposition 3 (SSC-A Impulse Response Functions). In the SSC-A case, suppose that

Q0 = Q̂1 ∈ (0, 1). The impulse response of the economy is given by:

log Yt =


a0 + f(Q̂1), t = 0,

a0 + a1 log θ̂ + f(Q̂1), t = 1,

a0 + f(Qt), t ≥ 2

Qt =


Q̂1, t ≤ 1,

Q2, t = 2,

T1(Qt−1), t ≥ 3.

(48)

Moreover, Q2 = Q̂1PO(a0 +a1 log θ̂+f(Q̂1), Q̂1, 0)+(1−Q̂1)PP (a0 +a1 log θ̂+f(Q̂1), Q̂1, 0) >

Q̂1, Qt is monotonically declining for all t ≥ 2, and Qt → Q̂1. The IRF is hump-shaped if

and only if θ̂ < exp{(f(Q2)− f(Q̂1))/a1}.

Proof. See Appendix A.9

All persistence in the IRF of output derives from persistence in the IRF of optimism.

There is a hump in the IRF for output if the boom induced by optimism exceeds the direct

29This is without a substantive loss of generality as we can always represent any non-SSC Tθ as the
concatenation of a set of restricted functions that are SSC on their respective domains. Concretely, whenever
Tθ is not SSC, we can represent its domain [0, 1] as a collection of intervals {Ij}j∈J such that ∪j∈J Ij = [0, 1]
and the restricted functions Tθ,j : Ij → [0, 1] defined by the property that Tθ,j(Q) = Tθ(Q) for all Q ∈ Ij
are either SSC-A or SSC-B for all j ∈ J . Thus, applying our results to these restricted functions, we have
a complete description of the global dynamics.
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effect of the shock. This contrasts with the SSC-B case, wherein impulse responses can be

discontinuous in the shock size. The following proposition characterizes the IRFs from the

pessimistic steady state; those from the optimistic steady state are analogous.

Proposition 4 (SSC-B Impulse Response Functions). In the SSC-B case, suppose that

θO < 1 < θP and that Q0 = 0. The impulse response of the economy is given by:

log Yt =


a0, t = 0,

a0 + a1 log θ̂, t = 1,

a0 + f(Qt), t ≥ 2

Qt =


0, t ≤ 1,

PP (a0 + a1 log θ̂, 0, 0), t = 2,

T1(Qt−1), t ≥ 3.

(49)

These impulse responses fall into the following four exhaustive cases:

1. θ̂ ≤ θP , No Lift-Off: Qt = 0 for all t ∈ N.

2. θ̂ ∈ (θP , θ
∗), Transitory Impact: Qt is monotonically declining for all t ≥ 2 and Qt → 0.

3. θ̂ = θ∗, Permanent (Knife-edge) Impact: Qt = Q̂1 for all t ≥ 1

4. θ̂ > θ∗, Permanent Impact: Qt is monotonically increasing for all t ≥ 2 and Qt → 1

where the critical shock threshold is θ∗ = exp{(P−1
P (Q̂1; 0)− a0)/a1} > θP . In the transitory

case, the output IRF is hump-shaped if and only if θ̂ < exp{f(PP (a0 + a1 log θ̂, 0, 0))/a1}.

Proof. See Appendix A.10.

To understand this result, we first inspect the IRFs. At time t = 0, the economy lies

at a steady state of extreme pessimism with log θ0 = 0 and so log Y0 = a0. At time t = 1,

the one-time productivity shock takes place and output jumps up to log Y1 = a0 + a1 log θ̂

as everyone remains pessimistic. At time t = 2, agents observe that output rose in the

previous period. As a result, a fraction PP (log Y1, 0) of the population becomes optimistic.

For output, the one-time productivity shock has dissipated, so output is now given by its

unshocked baseline a0 plus the equilibrium output effect of optimism f(Q2). From this point,

the IRF evolves deterministically and its long-run behavior depends solely on whether the

fraction that became initially optimistic exceeds the criticality threshold Q̂1 that delineates

the basins of attraction of the steady states of extreme optimism and extreme pessimism.

As a result, productivity shocks have the potential for the following four qualitatively

distinct effects, described in Proposition 4 and illustrated numerically in Figure 4. First, if

a shock is small and no agent is moved toward optimism, the shock has a one-period impact

on aggregate output. Second, if some agents are moved to optimism by the transitory boost

to output but this fraction lies below the criticality threshold, then output steadily declines
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Figure 4: Illustration of IRFs in an SSC-B Case
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Notes: The plots show the deterministic impulse responses of Qt and log Yt in a model calibration
with LAC updating. The four initial conditions correspond to the four cases of Proposition 4.

back to its pessimistic steady-state level as optimism was not sufficiently great to be self-

fulfilling. Third, in the knife-edge case, optimism moves to a new (unstable) steady state

and permanently increases output. Fourth, when enough agents are moved to optimism by

the initial boost to output, then the economy converges to the fully optimistic steady state

and optimism is completely self-fulfilling.

The impulse responses to narrative shocks are identical to those described above. One

can take the formulas in Propositions 3 and 4 from t ≥ 2 and set Q2 equal to the value of

Q that obtains following the narrative shock ε. It follows that the qualitative nature of the

impulse response to a narrative shock is identical to that of a fundamental shock.

Stochastic Boom-Bust Cycles. Having characterized the deterministic impulse prop-

agation mechanisms at work in the economy, we now turn to understand the stochastic

properties of the path of the economy as it is hit by fundamental and narrative shocks.

To this end, we analytically study the period of boom and bust cycles: the expected

time that it takes for the economy to move from a state of extreme pessimism to a state of

extreme optimism, and vice versa. Formally, define these expected stopping times as:

TPO = E [min{τ ∈ N : Qτ = 1}|Q0 = 0] , TOP = E [min{τ ∈ N : Qτ = 0}|Q0 = 1] (50)

where the expectation is taken under the true data generating process for the aggregate

component of productivity H, which may or may not coincide with one of the narratives
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under consideration, and that of the narrative shocks G.

The following result provides sharp upper bounds, in the sense that they are attained for

some (H,G), on these stopping times as a function of deep structural parameters:

Proposition 5 (Period of Boom-Bust Cycles). The expected regime-switching times satisfy

the following inequalities:

TPO ≤
1

1− EG
[
H
(

exp
{
P †P (1;0,ε)−a0

a1

})]
TOP ≤

1

EG
[
H
(

exp
{
P †O(0;1,ε)−a0−f(1)

a1

})] (51)

where P †P (x;Q, ε) = inf{Y : PP (Y,Q, ε) = x} and P †O(x;Q, ε) = sup{Y : PO(Y,Q, ε) = x}.
Moreover, when P †O(0; 1, 0)−P †P (1; 0, 0) ≤ f(1), these bounds are tight in the sense that they

are attained for some processes for fundamentals and narrative shocks (H,G).

Proof. See Appendix A.11

This result establishes that the economy regularly oscillates between times of booms and

busts. We establish this result by postulating fictitious processes for optimism and showing

that they bound, path-by-path, the true optimism process. This enables us to construct

stopping times that dominate the true stopping times in the sense of first-order stochastic

dominance and have expectations that can be computed analytically, thus providing the

claimed bounds. We establish that these bounds are tight by constructing a family of distri-

butions (H,G) such that the fictitious processes coincide always with the true processes.30

We can provide insights into the determinants of the period of boom-bust cycles from

these analytical bounds. Concretely, consider the bound on the expected time to reach a

bust from a boom. This bound is small when the quantity EG
[
H
(

exp
{
P †P (1;0,ε)−a0

a1

})]
is

large, which happens when there is a fat left tail of fundamentals, when it is relatively easier

for optimists to switch to pessimism as measured by P †O(0; 1, εP ), and when co-ordination

motives are weak as measured by f(1).

6.4 Additional Results and Extensions

Before proceeding to our quantification of the model, we briefly summarize additional results

and extensions contained within the Appendix.

30We moreover show that elements of this family can be attained by taking the limit of normal mixtures
with sufficiently dispersed means. Thus, for sufficiently dispersed µO and µP , we can therefore construct
(H,G) for which the bound is attained by taking weighted averages of the optimistic and pessimistic narra-
tives, making the uncertainty under each sufficiently small, and eliminating narrative shocks.
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Welfare Implications. So far, we have studied the positive implications of fluctuations

in optimism. In Appendix B.2, we study the normative implications of optimism and pro-

vide conditions under which its presence is welfare improving, despite it being misspecified.

Intuitively, optimism acts as an ad valorem price subsidy for firms, which induces firms to

hire more and can undo distortions caused by market power.

Continuous Optimism. Our baseline model featured, as in our main empirical specifica-

tions, only two narratives. In Appendix B.3, we generalize the setting studied in this section

to feature a continuum of models. We show that very similar dynamics for both real output

and narratives obtain in this specification of the model and the condition for extremal mul-

tiplicity is almost identical. Thus, the qualitative and quantitative features of the baseline

model carry over to this richer setting.

Multi-dimensional Narratives and Persistent Fundamentals. In the conceptual

framework and our measurement, we allowed for a general set of narratives. However, in our

main theoretical analysis, we restricted attention to two different narratives where agents

differ only in their optimism. In Appendix B.5, we extend the baseline model to allow for

arbitrarily many narratives regarding the mean, persistence, and volatility of fundamen-

tals, which is essentially exhaustive within the Gaussian class. We characterize quasi-linear

equilibrium in this richer setting and show how qualitatively similar dynamics obtain.

Persistent Idiosyncratic Shocks and Narrative Updating. Empirically, we found

that firms that experience positive idiosyncratic shocks are more likely to become optimistic.

In Appendix B.6, we extend the multi-dimensional narrative equilibrium characterization

when we allow for persistent idiosyncratic states and updating that depends on realized id-

iosyncratic states. When idiosyncratic shocks are fully transitory, this is of no consequence

and our equilibrium characterization is identical. However, when idiosyncratic shocks are

persistent, the fact that narrative updating depends on idiosyncratic shock realizations in-

duces dependence between an agent’s narrative and their idiosyncratic productivity state.

This matters for equilibrium output only insofar as it induces a time-varying covariance be-

tween and optimism and productivity. We find no empirical evidence for cyclicality of this

covariance. We therefore abstract from this channel in our quantitative analysis.

Contrarianism, Endogenous Cycles, and Chaos. While this model generates narra-

tively driven fluctuations, it cannot generate fully endogenous cycles and chaotic dynamics.

In Appendix B.7, we extend this model to allow for contrarianism and the possibility that

pessimists may be more likely to become optimists than optimists are to remain optimists.

Allowing for these features generates the possibility of endogenous cycles of arbitrary pe-

riod and topological chaos (sensitivity to arbitrarily small changes in initial conditions). This
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model also admits a structural test for the presence of cycles and chaos that we bring directly

to the data and reject at the 95% confidence level that either cycles or chaos obtain.

Narratives in Games and the Role of Higher-Order Beliefs. We have studied narra-

tively driven fluctuations in a business-cycle model, but our insights apply to co-ordination

games much more generally. In Appendix B.8, we study contagious narratives in beauty

contests Morris and Shin (2002), in which agents’ best replies are a linear function of their

expectations of fundamentals and the average actions of others. Many models of aggregative

games in macroeconomics and finance can be recast as such games when (log-)linearized (for a

review, see Angeletos and Lian, 2016). We characterize equilibrium in this context and show

how optimism percolates through the hierarchy of higher-order beliefs about fundamentals.

7 Quantifying the Impact of Narratives

We now combine our model and empirical results to gauge the quantitative effects of nar-

ratives on business cycles and their qualitative properties. First, combining our narrative

optimism time series with our calibration of partial- and general-equilibrium effects of op-

timism, we find that optimism explains 32% of the reduction in GDP over the early 2000s

recession, 18% over the Great Recession. Next, calibrating the dynamics of optimism to

match our empirical results, we find that narrative optimism generates 19% of the variance

in output. Finally, we study the macroeconomic consequences of all of the decision-relevant

narratives together. We reject the condition for extremal multiplicity and hysteresis for opti-

mism, but fail to reject it for other decision-relevant narratives. We then show in an extended

model how multiple latent narratives may co-evolve and drive emergent optimism. Taken

together, we therefore find that contagious narratives may explain a significant fraction of

the US business cycle.

7.1 Calibrating the Model

To obtain numerical predictions from the model, we need to know (i) the static relationship

between output and optimism; (ii) the data-generating process for fundamental shocks; and

(iii) the updating process for optimists and pessimists. We provide the model calibration in

Table 6 and additional details in Appendix F.

First, we have shown in Section 6 that, to identify the static relationship between output

and optimism, we need to estimate f . In turn, f requires knowledge of: δOP , the partial-

equilibrium effect of optimism on hiring; α, the returns-to-scale parameter; ε, the elasticity

of substitution between varieties; and ω, the extent of complementarity (which itself depends
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Table 6: Model Calibration

Fixed

ε Elasticity of substitution 2.6
γ Income effects in labor supply 0
ψ Inverse Frisch elasticity 0.4
α Returns-to-scale 1

Calibrated

µO − µP Belief effect of optimism 0.028
κ Signal-to-noise ratio 0.344
ρ Persistence of productivity 0.086
σ Std. dev. of the productivity innovation 0.011
u Stubbornness 0.208
r Associativeness 0.804
s Contagiousness 0.290
σε Std. dev. of the optimism shock 0.044

Notes: “Fixed” parameters are externally set. “Calibrated” parameters are chosen to hit various
moments. Our specific calibration methods are described in Section 7.1.

on γ, indexing income effects in labor supply, and ψ, the inverse Frisch elasticity of labor

supply). In our main analysis, we combine our baseline regression estimate of δ̂OP = 0.0355

(see Table 1) with an external calibration of α, ε, γ, and ψ, which together also pin down

ω. In Section 7.2, we study the sensitivity of our results to this external calibration, and we

introduce two other calibration strategies for complementarity: using estimates of demand

multipliers from the literature and inferring a demand multiplier for optimism using our own

firm-level regressions.

For the external calibration, we impose that intermediate goods firms have constant

returns-to-scale or α = 1, which has been argued by Basu and Fernald (1997), Foster, Halti-

wanger, and Syverson (2008), and Flynn, Traina, and Gandhi (2019) to be a reasonable

assumption for large US firms. Second, as noted by Angeletos and La’O (2010), γ indexes

wealth effects in labor supply, which are empirically very small (Cesarini, Lindqvist, No-

towidigdo, and Östling, 2017). Hence, we set γ = 0 for our benchmark calibration. Third,

we calibrate the inverse Frisch elasticity of labor supply at ψ = 0.4, which is within the range

of standard macroeconomic estimates (Peterman, 2016). Finally, we calibrate the elasticity

of substitution to match estimated markups from De Loecker, Eeckhout, and Unger (2020) of

60%, which implies that ε = 2.6. Hence, altogether, this calibration implies an aggregate de-

gree of strategic complementarity of ω = 0.49. Finally, we observe that the calibration of δOP

puts only one restriction on the parameters κ and µO − µP , respectively the signal-to-noise

ratio and the impact of optimism on agents’ prior means.

Second, we calibrate the process for fundamentals. To allow for persistence in both
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fundamentals as well as any unmodelled factors, we calibrate a case of the model with

persistent fundamentals based on the analysis in Appendix B.5. Concretely, we suppose that

log θt is a Gaussian AR(1) process with persistence ρ and IID innovations ut ∼ N(0, σ2):

log θt = ρ log θt−1 + ut (52)

To obtain the law of motion of aggregate output, we require three parameters (ρ, σ, κ). We

calibrate these to match the properties of fundamental output, defined as

log Y f
t = log Yt − f(Qt) (53)

In Appendix F, we show that log Y f
t follows an ARMA(1, 1) with white noise process ζt. To

calculate log Y f
t in the data, we take log Yt as band-pass filtered US real GDP (Baxter and

King, 1999), Qt as our measured time series of aggregate optimism (see Figure 1), and f as

our calibrated function.31 We estimate by maximum-likelihood the ARMA(1,1) process for

Y f
t and then set (ρ, σ, κ) to exactly match the three estimated ARMA parameters. Upon

obtaining κ, the restriction on κ and µO − µP imposed by δOP yields the value of µO − µP .

Third, we calibrate the process for updating probabilities. We use our regression estimates

of the LAC form (see Equation 29) which corresponds to the linear probability model (see

Table 4).32 This yields values of u = 0.208 for stubbornness, r = 0.804 for associativeness,

and s = 0.290 for contagiousness. We finally calibrate a shock process for εt, the aggre-

gate shocks for proclivity toward optimism. In particular, we assume that εt ∼ N(0, σ2
ε).

Conditional on the rest of the calibration, we set σ2
ε to match the time-series variance of

optimism.

7.2 How Does Optimism Shape the Business Cycle?

Using the calibrated model, we now study the effects of optimism on the business cycle

via two complementary approaches: (i) gauging the historical effect of swings in business

optimism on US GDP and (ii) exploring the full dynamic implications of contagious and

associative optimism in simulations.

31We apply the Baxter and King (1999) band-pass filter to post-war quarterly US real GDP data (Q1
1947 to Q1 2022). We use a lead-lag length of 12 quarters, a low period of 6 quarters, and a high period of
32 quarters. We then average these data to the annual level.

32While the linear probability model does not necessarily yield probabilities between zero and one, our
estimates of u, r and s imply updating probabilities that are always between zero and one so long as output
does not deviate by more than 30% (holding fixed ε) or there is a five-standard-deviation optimism shock
(holding fixed output at steady state).
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Figure 5: The Effect of Optimism on Historical US GDP
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Notes: The “Real GDP Cycle” is calculated from a Baxter and King (1999) band-pass filter cap-
turing periods between 6 and 32 quarters. The “Contribution of Optimism” is the model-implied
effect of optimism on log output. The 95% confidence interval incorporates uncertainty from the
calibration of δOP using the delta method.

The Effects of Optimism on US GDP. In our empirical exercise, which leveraged

cross-sectional data on US firms’ optimism, the general-equilibrium effect of optimism on

total production was the unidentified “missing intercept.” Now, equipped with the model

calibration of general-equilibrium forces, we can return to the question of how changes in

optimism have historically affected the US business cycle. Concretely, we calculate the time

series of f(Qt), where f is the calibrated function mapping aggregate optimism to aggregate

output, which depends on the partial-equilibrium effect of optimism on hiring, returns-to-

scale, and the demand multiplier, and Qt observed annual time series for business optimism,

originally reported in Figure 1. We take the observed time path of aggregate optimism as

given, and therefore use the estimated dynamics of optimism only to determine the shocks

that rationalize this observed path.

Figure 5 illustrates our findings by plotting the cyclical component of real GDP (dashed

line) and the contribution of measured optimism toward output according to our model

(solid line with grey 95% confidence interval). We observe that cyclical optimism explains

a meaningful portion of fluctuations, particularly the booms of the mid-1990s and the mid-

2000s and the busts of 2000-2002 and 2007-2009.

We next zoom in on the contribution of optimism toward macroeconomic crashes in 2000-

02 and 2007-09. Over each of these two downturns, we calculate the percentage of output
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Table 7: The Effect of Optimism on US Recessions

Change (%)
Period Detrended GDP Optimism Component f(Qt) % Explained

2000-2002 -2.91
-0.92 31.65
(0.08) (2.68)

2007-2009 -4.13
-0.75 18.06
(0.06) (1.53)

Notes: The first column gives the change in detrended, annualized real GDP over the stated periods.
The second column gives the component of this change attributed to the change in aggregate
optimism by the model. The third column is the fraction of the real GDP change explained by
optimism, defined in Equation 54. Standard errors for columns 2 and 3 incorporate uncertainty
from estimating δOP and are calculated using the delta method.

reduction explained by the dynamics of optimism as

% Explained(t0, t1) = 100 · f(Qt1)− f(Qt0)

log Yt1 − log Yt0
(54)

where Q is measured optimism, log Y is the measured cyclical component of log real GDP,

and (t0, t1) are the endpoints. We report these results in Table 7. The decline in the optimism

component of GDP explains 31.65% of the output loss between 2000 and 2002, and 18.06%

of the output loss between 2007 and 2009.

To more systematically gauge the model-implied causes of the historical business cycle,

we plot the sequence of fundamental output and optimism shocks that our model requires

to match the realized optimism and output time series in Figure A11. Our model accounts

for the early 2000s recession with a large negative optimism shock—ε2001 = −0.08, or -1.8

standard deviations in our calibration—and a moderate-sized shock to fundamental output.

For the Great Recession, our model implies a larger shock to fundamentals along with a

smaller optimism shock —ε2008 = −0.06 or -1.4 standard deviations. The larger contribution

of, and shock to, optimism at the outset of the early 2000s recession is consistent with a story

that a break in confidence, associated with the “dot com” crash in the stock market, spurred a

recession despite sound economic fundamentals. This is further consistent with independent

textual evidence that “crash narratives” in financial news were especially rampant in this

period (Goetzmann, Kim, and Shiller, 2022).

Contagious Narratives and Economic Fluctuations: Simulation Results. To more

fully describe the role of narrative dynamics in shaping the business cycle, we turn to model

simulations which incorporate the fully calibrated process for how optimism spreads.
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Figure 6: The Contribution of Optimism to Output Variance

0 1 2
Autocovariance Horizon

0.0

0.2

0.4

0.6

0.8

1.0
Sh

ar
e 

of
 V

ar
ia

nc
e 

Ex
pl

ai
ne

d

0.19

0.34

0.81

0.05

0.17

0.61

0.05
0.00 0.00

0 1 2
Autocovariance Horizon

0.0

0.5

1.0

1.5

No
n-

Fu
nd

am
en

ta
l A

ut
oc

ov
ar

ia
nc

e 1e 5
1.69

1.28

0.84

0.36

0.54
0.44

0.33

0.00 0.00

Baseline (Dynamics and Shocks) No Shocks No Dynamics

Notes: The left panel plots the fraction of variance, one-year autocovariance, and two-year autoco-
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plot results under three model scenarios: the baseline model with optimism shocks and optimism
dynamics (blue), a variant model with no shocks, or σ2

ε = 0 (orange), and a variant model with
shocks but no dynamics for narrative spread, or u = r = s = 0 (green).

To produce a summary statistic for the contribution of optimism toward the covariance

structure of output, we observe that the covariance of output at lag ` ≥ 0 can be decomposed

into four terms:

Cov[log Yt, log Yt−`] = Cov[log Y f
t , log Y f

t−`] + Cov[f(Qt), f(Qt−`)]

+ Cov[f(Qt), Yt−`] + Cov[f(Qt−`), Yt]
(55)

The first term captures the volatility and persistence of exogenous fundamentals (i.e., the

driving productivity shocks). The second term captures the volatility and persistence of

the non-fundamental component of output. The last two terms capture the relationship of

optimism with past and future fundamentals, which arises from the co-evolution of narratives

with economic outcomes.

We therefore define non-fundamental variance as the total autocovariance arising from

endogenous optimism as the sum of the last three terms, as well as its fraction of total
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variance, at each lag `:

Non-Fundamental Autocovariance` = Cov[log Yt, log Yt−`]− Cov[log Y f
t , log Y f

t−`]

Share of Variance Explained` =
Non-Fundamental Autocovariance`

Cov[log Yt, log Yt−`]

(56)

We calculate these statistics at horizons ` ∈ {0, 1, 2} and under three model variants: the

baseline model with shocks, a variant model which turns off the shocks (or sets σ2
ε = 0), and

a variant model that keeps the shocks but turns off the endogenous evolution of narratives

(by setting u = r = s = 0).33

We report our findings in Figure 6. Optimism explains 19% of contemporary variance

(` = 0), and this fraction increases with the lag. At one-year and two-year lags, optimism

explains 34% and 81% of output autocovariance, respectively. Thus, most medium-frequency

(two-year) dynamics are produced by contagious optimism instead of fundamentals. The

model without endogenous dynameics of optimism explains only 4% of output variance and,

as optimism shocks are IID, 0% of output auto-covariance. Moreover, while the model

without optimism shocks matches only 5% of output variance, it accounts for 17% and 61%

of one-year and two-year output autocovariance. Interestingly, the separate contributions to

output variance of shocks and endogenous dynamics sum to less than one half of their joint

explanatory power. This result establishes that the contagiousness and associativeness of

narratives are amplifying propagation mechanisms for exogenous sentiment shocks.

Parametric Sensitivity Analysis. In Table A19, we report sensitivity analysis of the

conclusions above to different calibrations for the macroeconomic parameters. We first focus

on the calibration of macroeconomic complementarity and, by extension, the demand mul-

tiplier. Recall that f(Q) ≈ αδOP

1−ω Q, where 1
1−ω is the general equilibrium demand multiplier

in our economy, α indexes the returns-to-scale, and δOP is the partial equilibrium effect of

optimism on hiring. Our baseline calibration implies a multiplier of 1
1−ω = 1.96. In rows 1,

2, 3, and 4 we vary the multiplier by: (i) adjusting the inverse-Frisch elasticity 2.5 to match

micro estimates (Peterman, 2016), (ii) allowing for greater income effects in labor supply

γ = 1, (iii) matching the empirical estimates of the demand multiplier of 1.33 from Flynn,

Patterson, and Sturm (2021), and (iv) estimating the general equilibrium multiplier by op-

timism semi-structurally by using the extent of omitted variables bias from omitting a time

fixed effect in the regression of hiring on optimism (see Appendix F.3 for the details). Our

numerical results from adjusting the multiplier, holding fixed (δOP , α, ε), convey that the

contribution of optimism is increasing in this number. We finally consider sensitivity to the

33As discussed in Online Appendix F, we always add a constant to LAC updating so 0.5 is the interior
steady-state when output is at its steady state. Thus, the “no dynamics” variant sets Qt+1 = 0.5 + εt.
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calibrations of the elasticity of substitution ε (row 5 of Table A19) and the returns-to-scale

α (row 6 of Table A19) holding fixed the multiplier (via adjustment in ψ). Changing ε has

close to no effect on our results, due to the aforementioned near-linearity of f . Reducing α,

or assuming decreasing returns to scale, dampens the effect of optimism on output because

it implies a smaller production effect of our estimated effect of optimism on hiring.

7.3 Can Contagious Optimism Generate Hysteresis?

We have shown that the dynamics of optimism generate quantitatively significant business

cycles. However, we have not yet explored the implications of narratives for hysteresis and

long-run movements in output. Our theoretical analysis delimited two qualitatively different

regimes for macroeconomic dynamics with contagious optimism: one with stochastic fluctu-

ations around a stable steady state, and one with hysteresis and (almost) global convergence

to extreme steady states. In which regime do the estimated dynamics lie?

For the LAC case which we have taken to the data, the necessary and sufficient condition

for extremal multiplicity is given by Equation 44. We compute the empirical analog of this

condition as:

M̂ = û+ ŝ+ r̂f(1)− 1 (57)

If M̂ > 0, the calibrated model features hysteresis in the dynamics of optimism and output; if

M̂ < 0, the model features oscillations around a stable steady state. We find M̂ = −0.44 < 0

with a standard error of 0.052, implying stable oscillations and ruling out hysteresis dy-

namics. This reflects the fact that decision-relevance, stubbornness, contagiousness, and

associativeness are sufficiently small for narrative optimism.

While we find that the model of narrative optimism is consistent with stable fluctuations,

this conclusion could be overturned with higher stubbornness or higher contagiousness. Both

parameters were somewhat imprecisely estimated in our empirical analysis. Moreover, we

might suspect that they vary over time. For example, the rise of the internet and the

corresponding increase in the speed with which ideas can spread may have increased conta-

giousness.

Therefore, we explore more carefully the sensitivity of our conclusions regarding opti-

mism’s role for the business cycle to the calibration of these parameters. In Figure 7, we

plot our point estimate of contagiousness and stubbornness as a plus and its 95% confidence

interval as a dotted ellipse. We also plot, as a dashed line, the condition for M = 0; to the

left of this line, M < 0, and to the right of this line, M > 0. To gauge whether optimism

is an “outlier” among narratives in being so far from this line, we compare its estimates to

those corresponding to our other thirteen decision-relevant narratives (Table 3). The asso-
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Figure 7: Variance Decomposition for Different Values of Stubbornness and Contagiousness

Notes: Calculations vary u and s, holding fixed all other parameters at their calibrated
values. The shading corresponds to the fraction of variance explained by optimism, or
Share of Variance Explained0 defined in Equation 56. The plus is our calibrated value from Table
6, and the dotted line is the boundary of a 95% confidence set. The dots are calibrated values for
other narratives from Figure A9. The dashed line is the condition of extremal multiplicity from
Corollary 3 and Equation 44.

ciated point estimates of (s, u) for the other nraratives are green dots in Figure 7. Several

of the thirteen plotted points are close to the condition for extremal multiplicity. Two are

across the threshold. Thus, if optimism were to have the stubbornness and contagiousness

of either of these two narratives, the joint dynamics of optimism and output would feature

hysteresis.34

How does extremal multiplicity interact with our model’s predictions for non-fundamental

volatility? To isolate the role of endogenous propagation, our theoretical discussion of ex-

tremal multiplicity considered paths of the economy with shocks to neither fundamentals nor

narratives. In the quantitative model, the economy is constantly buffeted with shocks that

move optimism away from its steady state(s). To measure how this shapes macroeconomic

dynamics, we also shade in Figure 7 the fraction of variance explained by non-fundamental

optimism. In our baseline calibration, indicated by the plus, this is 19%. This figure is sta-

ble near the confidence interval associated with our calibration, suggesting that statistical

34The narratives across the line are Topic 3 (Value, Fair, Loss) and Topic 6 (Stock, Compensation, Tax).
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uncertainty about narrative propagation does not overly influence our results.

Near the condition for extremal multiplicity, non-fundamental variance reaches essentially

100% of total variance. This is because even small shocks have the potential to “go viral,”

and the force pulling the economy toward an interior steady state (i.e., balanced optimism

and pessimism) is weak. If optimism were to have the propagation of some of our other

observed narratives, which lie close to this line, it could induce such violent fluctuations.35

Finally, far to the right of the extremal multiplicity condition, contagious optimism ex-

plains little output variance. This is because the economy quickly settles into an extreme

steady state, fully optimistic or fully pessimistic, and moves quickly back to this steady-state

in response to shocks. Figure A13 shows this quantitatively by plotting, against the same

(s, u) grid, the fraction of time that the optimistic fraction Qt lies outside of [0.25, 0.75]—this

is 0% at the baseline calibration, and essentially 100% in the calibrations featuring extremal

multiplicity. In this region, while sentiment does not greatly affect output dynamics, it

does affect the static level of output—moreover, path dependence in the early history of our

simulation determines whether output is permanently high (optimism goes viral) or perma-

nently low (pessimism goes viral). Thus, even in a stochastic economy, M remains a highly

predictive statistic for the nature of the dynamics of the economy.

7.4 Multi-Dimensional Narratives: Hysteresis, Confluence, and

Constellations

Our quantitative analysis thus far has focused on the overall dynamics of optimism and

pessimism and their macroeconomic effects. In this final subsection, we study how multiple,

more granular narratives may evolve, interact, and shape macroeconomic dynamics. To

do this, we calibrate versions of the quantitative model to match the estimated properties

of Shiller’s Perennial Economic Narratives and our unsupervised Latent Dirichlet Allocation

estimation. While this analysis is necessarily more speculative, due to the richness of possible

interactions between these narratives and the number of parameters required to discipline

these interactions, we highlight two overall findings: (i) the more granular narratives have a

higher tendency toward hysteresis and unstable dynamics, and (ii) “constellations” of more

granular narratives, with qualitatively different evolution, may underlie the overall dynamics

of sentiment in the economy.

35Due to the presence of shocks to optimism, this prediction is symmetric around the extremal multiplicity
threshold; in the variant model which turns off optimism shocks, which is closer to what we studied in the
theory, the extremal multiplicity condition sharply delineates the regime in which optimism fluctuations
contribute to output variance from the regime in which there is complete hysteresis (Figure A12).
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Figure 8: Evaluating Potential for Hysteresis for All Decision-Relevant Narratives
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Notes: For the binary construction of each narrative, we estimate the parameters of the updating
rule (see Figure A9) and the partial-equilibrium effect on hiring via a variant of Equation 12 (see
Figure A10). We then calculate M̂k = ûk + ŝk + r̂kf̂k(1) − 1. We report our point estimates for
each narrative along with 95% confidence intervals error bars, calculated using the delta method.

Hysteresis. We first perform tests for the possibility of hysteresis for the other decision-

relevant narratives. To do this, we estimate M̂k (Equation 57) using the estimated stubborn-

ness, associativeness, contagiousness, and partial equilibrium effects on hiring of the other

thirteen narratives indexed by k. In models in which each of these narratives existed in

isolation, the condition Mk > 0 would be necessary and sufficient for extremal multiplicity.

We plot our estimates along with 95% confidence intervals in Figure 8. We find that many of

our narratives have values for M that are close to zero, while one narrative’s 95% confidence

interval for M contains zero. Thus, while we can reject that optimism features hysteresis

dynamics, we cannot do so for all of the narratives that we consider. Heuristically, this find-

ing matches up with the corresponding time series (see Figures 1, A2, A3): while optimism

appears to fluctuate in a stable fashion, other narratives have time series that appear to

undergo regime shifts, with many notably happening around the Great Recession.

Confluence and Constellations in an Enriched Model. Shiller (2020) argues that

constellations of many smaller and semantically related narratives may reinforce one another

to create strong economic and social effects, and that the confluence of seemingly unrelated

narratives may explain business-cycle fluctuations. In our empirical analysis, we found two
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pieces of evidence suggesting that the thirteen more granular narratives discussed above

behave like a constellation. First, we found that more specific narratives significantly predict

movements in optimism. Second, we found that optimism about any specific narrative affects

hiring no differently than optimism alone.

To understand how this constellation structure for optimism may affect our macroeco-

nomic predictions, we calibrate a modified quantitative model in which the granular narra-

tives drive emergent optimism. In this model, there is a latent space of K narratives, in

which agents either believe or do not believe: λit = (λ1,it, . . . , λK,it) ∈ {0, 1}K . Based on a

vector of constellation weights β = (β1, . . . , βK), the probability that an agent is optimistic

is given by β′λit. Thus, the aggregate level of emergent optimism is given by Qt = β′Qk,t,

where Qk,t =
∫

[0,1]
λk,it di is the fraction of agents that believe in narrative k. Each narrative

k evolves according to LAC updating probabilities with stubbornness uk, associativeness rk,

and contagiousness sk, with Gaussian narrative shocks that are IID across k with common

variance σ2
ε . The rest of the model is the same as the baseline. Thus, while dynamics are the

same conditional on the process for optimism, the process for emergent optimism through

the latent evolution of narratives may differ.36

To calibrate the new parameters, we proceed in three steps. First, we run a firm-level

regression of optimism on the loadings for the other narratives to estimate the βk. We nor-

malize the sign of each narrative such that its corresponding βk is positive, for comparability.

Second, we use our estimated stubbornness, associativeness, and contagiousness parameters

for each decision-relevant narrative and specify an LAC updating process for each given

these parameters (see Figure A9). Finally, we calibrate the variance of the narrative shocks

to match the time series variance of optimism. We describe the full details of this calibration

approach in Appendix F.2.

We find that optimism explains 17% of total output variance, comparable to our baseline

finding of 19%. In this sense, the “reduced-form” model of the entire optimism constellation

delivers similar macroeconomic predictions to the more granular model. This implies that the

evolution of multiple narratives can be captured through reduced-form sentiment, conditional

on correctly specifying the process by which this sentiment spreads.

However, this similarity belies significant heterogeneity in how the granular narratives

spread, which is in turn related to each narrative’s tendency to “go viral.” To illustrate

this, observe that the variance in emergent optimism can be decomposed into components

36A caveat to our approach is that we do not allow for any complementarity or substitutability in how
contagious each narrative is. However, this does not mean that each narrative spreads independently. As
each narrative affects decisions and decisions affect output, associativeness links the dynamics of the full set
of narratives. Moreover, even in the absence of associativeness, optimism that emerges from the combination
of separate nonlinear processes for narrative evolution could feature different dynamics.
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arising from each narrative’s variance, Var[Qk,t], as well as a remainder arising from their

covariance, which is quantitatively negligible (it equals -0.016). We find that the Var[Qk,t]

are considerably different across narratives. In Figure A14, we report a scatterplot of the

individual Var[Qk,t] against the calculated M̂k statistics. Narratives with high M̂k have

markedly higher variance contributions, reflecting their more mercurial dynamics, as pre-

dicted by the theory. Practically speaking, this means that a few narratives with a great

proclivity toward dramatic swings may be significant drivers of emergent optimism. Thus,

notwithstanding the fact that it is sufficient to study emergent sentiment if one wishes to

understand macroeconomic dynamics, modeling more granular narratives is essential for

understanding the process by which sentiment emerges.

8 Conclusion

This paper studies the macroeconomic implications of contagious, belief-altering narratives.

We develop a conceptual framework in which narratives form building blocks of agents’ be-

liefs, affect agents’ decisions, and spread contagiously and associatively between agents. We

measure proxies for narratives among US firms and find evidence that narratives are decision-

relevant, contagious, and associative. We find that a contagious, associative, and decision-

relevant optimism narrative reflects a non-fundamental shifter of beliefs, corresponding to

over-optimism about economic conditions. We develop a business-cycle model that embeds

these findings and find that narratives can generate non-fundamentally driven boom-bust

cycles, hysteresis, and impulse responses that are hump-shaped over time and discontinu-

ous in the sizes of shocks. When we calibrate the model to match the data, we find that

the business-cycle implications of narratives are quantitatively significant: we estimate that

measured declines in optimism account for approximately 32% of the peak-to-trough decline

in output over the early 2000s recession and 18% over the Great Recession.

An important issue that our analysis leaves unexplored is what “makes a narrative a

narrative”—that is, in the language of our model, what microfounds the set of narratives and

their contagiousness? A richer study of these issues would be essential to study policy issues,

including both the interaction of standard macroeconomic policies with narratives and the

potential effects of directly “managing narratives” via communication. Moreover, probing

these deeper origins of narratives could further enrich the study of narrative constellations

beyond our suggestive analysis, to account for the full economic, semantic, and psychological

interactions among narratives in a complex world.
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Appendices

A Omitted Derivations and Proofs

A.1 Derivation of Equations 3 and 5

We first provide two assumptions under which Equation 3 holds as a linear approximation

with a quadratic error bound. In what follows, we impose the technical requirements that

X is convex, compact subset of R, Y is a convex, compact subset of Rn, Θ is a convex,

compact subset of Rm, and Ω is a convex, compact subset of Rr. We first assume regularity

conditions on payoffs to ensure the sufficiency of first-order conditions for optimality:

Assumption 1. The utility function u is strictly concave and twice continuously differen-

tiable. The conjectured aggregate outcome function Ŷ is continuously differentiable.

We next assume that agents’ information about the random fundamentals is generated

by location experiments that are conditionally independent of the fundamental, agents’ pref-

erence shifters, and the narratives held by agents. We moreover assume that all narratives

are equally sensitive to information.

Assumption 2. The agents’ information sets are generated by location experiments, i.e.,

sit = θt + νit, where νit is a zero-mean random variable that is independent of θt, ωi, and λit.

Moreover, conditional on the signal, the conditional expectation of θt under each narrative k

is given by Ek[θt|sit] = κsit + (1− κ)Ek[θt] +O(||sit||2).

A sufficient condition for this assumption to hold with no approximation error is that all

fundamentals and signals are Gaussian and the signal-to-noise ratio of the signal is constant

across all narratives. Under these two assumptions, we can derive the form of the regression

equation and that, modulo any misspecification error, the conditional expectation function

is linear.

Proposition 6. Under Assumptions 1 and 2, we have that:

xit = γi + χt +
∑
k∈K

δkλk,it + εit +O(||(xit, Yt, θt, Qt, ωi, νit, λit)||2) (58)

where εit is a zero mean random variable that is uncorrelated with γi, χt and λit. Thus, net

of the misspecification error, the conditional expectation function is given by:

E[xit|i, t, λit] = γi + χt +
∑
k∈K

δkλk,it (59)
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Proof. By Assumption 1, from the agents’ problems (Equation 2), their best replies must

solve the following first-order condition (where we suppress all individual and time sub-

scripts):

Eπλ
[
ux(x, Ŷ (θ), θ, ω)|s

]
= 0 (60)

We linearize this first-order condition in (x, Y, θ, ω) around values (x̄, Ȳ , θ̄, ω̄) which satisfy

ux(x̄, Ȳ , θ̄, ω̄) = 0. This gives

Eπλ
[
uxx(x− x̄) + u′xY (Y − Ȳ ) + u′xθ(θ − θ̄) + u′xω(ω − ω̄)|s

]
+R = 0 (61)

where (uxx, uxY , ux,θ, uxω) are constants equal to the corresponding derivatives evaluated at

(x̄, Ȳ , θ̄, ω̄), the remainder R is O(||(x, Y, θ, ω, ν, λ)||2). We can rearrange the above, and use

the fact that ω is known to the agent, to write:

x = x̄+
1

|uxx|
u′xω(ω − ω̄) +

1

|uxx|
Eπλ

[
u′xY (Y − Ȳ ) + u′xθ(θ − θ̄)|s

]
+

1

|uxx|
R (62)

Moreover, we know that Ŷ = Ŷ (Q, θ). Thus, assuming that Ŷ is continuously differentiable,

we may linearize Y = Ȳ +Y ′Q(Q− Q̄) +Y ′θ (θ− θ̄) + R̂, where Ȳ = Ŷ (Q̄, θ̄) and R̂ is the error

induced by the approximation of Ŷ , which is O(||Y,Q, θ||2). Substituting this approximation

into Equation 62 gives

x = x̄+
1

|uxx|
u′xω(ω − ω̄) +

1

|uxx|
Eπλ

[
u′xY (Y ′Q(Q− Q̄) + Y ′θ (θ − θ̄)) + u′xθ(θ − θ̄)|s

]
+ R̃

= γ + χ̃+ Eπλ
[
θ̃|s
]

+ R̃

(63)

where γ = x̄ + 1
|uxx|u

′
xω(ω − ω̄) − 1

|uxx|u
′
xY (Y ′QQ̄ + Y ′θ θ̄) − 1

|uxx|u
′
xθθ̄, χ̃ = 1

|uxx|u
′
xY Y

′
QQ, and

θ̃ = 1
|uxx| (u

′
xY Y

′
θ + u′xθ) θ, R̃ = 1

|uxx|R + R̂.

We next re-write the conditional expectation of θ̃ as linear in two arguments, the signal s

and prior mean Eπλ [θ̃]. Using first the linearity of the expectation operator and the linearity

of forming beliefs from narratives, and second Assumption 2 to re-write each narrative-

specific conditional expectation in terms of the signal and the prior, we write

Eπλ
[
θ̃|s
]

=
∑
k∈K

λkEk[θ̃|s] = κs̃+ (1− κ)Eπλ [θ̃] + Ř (64)

where Eπλ [θ] =
∑

k∈K λkEk[θ] is the average prior mean across narratives, Ř is the error

induced by the approximation and is O(||(θ, ν, λ)||2), and the transformed signal is s̃ =
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1
|uxx| (u

′
xY Y

′
θ + u′xθ) s = θ̃ + ν̃, with ν̃ = 1

|uxx| (u
′
xY Y

′
θ + u′xθ) ν independent of θ̃ and of mean

zero by Assumption 2. Defining χ = χ̃+ κθ̃, ε = κν̃ and δk = (1− α)Ek[θ̃], we may write:

x = γ + χ+
∑
k∈K

δkλk + ε+ R̄ (65)

where R̄ = R̃ + Ř = O(||(x, Y, θ,Q, ω, ν, λ)||2). Re-introducing subscripts, we have ωi, Qt,

θ̃t, λk,it and εit. Thus, we have the claimed regression equation:

xit = γi + χt +
∑
k∈K

δkλk,it + εit +O(||(xit, Yt, θt, Qt, ωi, νit, λit)||2) (66)

As εit has zero mean and is uncorrelated with γi, χt and λit, the claimed formula for the

conditional expectation function follows.

We now turn to the narrative updating rule. We impose the following assumption:

Assumption 3. The updating rule P is continuously differentiable.

We finally derive Equation 5 under this condition:

Proposition 7. Under Assumption 3, we have that:

P[λit = λ|λi,t−1, Yt−1, Qt−1] = ζλ+u′λλi,t−1+r′λYt−1+s′λQt−1+O(||(λi,t−1, Yt−1, Qt−1)||2) (67)

Proof. By definition we have that P[λit = λ|λi,t−1, Yt−1, Qt−1] = Pλ(λi,t−1, Yt−1, Qt−1). Lin-

earizing this expression under Assumption 3, we immediately have:

P[λit = λ|λi,t−1 = λ′, Yt−1, Qt−1] = ζλ + uλ,λ′ + r′λYt−1 + s′λQt−1 +O(||(λi,t−1, Yt−1, Qt−1)||2)

(68)

Completing the proof.

A.2 Proof of Proposition 1

Proof. We guess and verify that there exists a unique quasi-linear equilibrium. That is,

there exists a unique equilibrium of the following form for some parameters a0, a1 ∈ R and

function f : [0, 1]→ R:

log Y (θ,Q) = a0 + a1 log θ + f(Q) (69)

To verify this conjecture, we need to compute best replies under this conjecture and show

that when we aggregate these best replies that the conjecture is consistent and, moreover,

that it is consistent for a unique triple (a0, a1, f).
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From the arguments in the main text, we need to compute two objects: logEit
[
θ
− 1+ψ

α
it

]
and logEit

[
Y

1
ε
−γ

t

]
. We can compute the first object directly. Conditional on a signal sit

and a narrative weight λit, we have that the distribution of the aggregate component of

productivity is:

log θt|sit, λit ∼ N
(
κsit + (1− κ)(λitµO + (1− λit)µP ), σ2

θ|s
)

(70)

by the standard formula for the conditional distribution of jointly normal random variables,

where:

κ =
1

1 + σ2
e

σ2
θ

and σ2
θ|s =

1
1
σ2
θ

+ 1
σ2
e

(71)

with κ being the signal-to-noise ratio and σ2
θ|s the variance of fundamentals conditional on

the signal. Thus, idiosyncratic productivity has conditional distribution given by:

log θit|sit, λit ∼ N
(
log γi + κsit + (1− κ)(λitµO + (1− λit)µP ), σ2

θ|s + σ2
θ̃

)
(72)

where we will denote the above mean by µit and variance by η2. Hence, rewriting and using

the moment generating function of a normal random variable, we have that:

logEit
[
θ
− 1+ψ

α
it

]
= logEit

[
exp

{
−1 + ψ

α
log θit

}]
= −1 + ψ

α
µit +

1

2

(
1 + ψ

α

)2

η2

(73)

Under our conjecture (Equation 69), we can moreover compute:

logEit
[
Y

1
ε
−γ

t

]
= logEit

[
exp

{(
1

ε
− γ
)

(a0 + a1 log θt + f(Qt)

}]
=

(
1

ε
− γ
)

[a0 + a1(µit − log γi) + f(Qt)] +
1

2
a2

1

(
1

ε
− γ
)2 [

η2 − σ2
θ̃

] (74)

Thus, we have that best replies under our conjecture are given by:

log xit =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
µit −

1

2

(
1 + ψ

α

)2

η2

+

(
1

ε
− γ
)

[a0 + a1(µit − log γi) + f(Qt)] +
1

2
a2

1

(
1

ε
− γ
)2 [

η2 − σ2
θ̃

] ] (75)

65



To confirm the conjecture, we must now aggregate these levels of production and show that

they are consistent with the conjecture. Performing this aggregation we have that:

log Yt = log

[(∫
[0,1]

x
ε−1
ε

it

) ε
ε−1

]

=
ε

ε− 1
logEt

[
exp

{
ε− 1

ε
log xit

}]
=

ε

ε− 1
logEt

[
Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]] (76)

Moreover, expanding the terms in Equation 75, we have that:

log xit =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
[log γi + κsit + (1− κ) [λitµO + (1− λit)µP ]]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κsit + (1− κ) [λitµO + (1− λit)µP ]) + f(Qt)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
(77)

which is, conditional on λit, normally distributed as both log γi and sit are both normal.

Hence, we write log xit|λit ∼ N(δt(λit), σ̂
2), where:

δt(λit) =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
[µγ + κ log θt + (1− κ) [λitµO + (1− λit)µP ]]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κ log θt + (1− κ) [λitµO + (1− λit)µP ]) + f(Qt)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
(78)
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and:

σ̂2 =

(
1

1+ψ−α
α

+ 1
ε

)2 [(
1 + ψ

α

)2

σ2
γ + κ2

[
1 + ψ

α
+ a1

(
1

ε
− γ
)]2

σ2
e

]
(79)

Thus, we have that:

Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]

= exp

{
ε− 1

ε
δt(λit) +

1

2

(
ε− 1

ε

)2

σ̂2

}
(80)

and so:

Et
[
Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]]

= Qt exp

{
ε− 1

ε
δt(1) +

1

2

(
ε− 1

ε

)2

σ̂2

}

+ (1−Qt) exp

{
ε− 1

ε
δt(0) +

1

2

(
ε− 1

ε

)2

σ̂2

}

=

[
Qt exp

{
ε− 1

ε
(δt(1)− δt(0))

}
+ (1−Qt)

]
exp

{
ε− 1

ε
δt(0) +

1

2

(
ε− 1

ε

)2

σ̂2

} (81)

Yielding:

log Yt = δt(0) +
1

2

ε− 1

ε
σ̂2 +

ε

ε− 1
log

(
Qt exp

{
ε− 1

ε
(δt(1)− δt(0))

}
+ (1−Qt)

)
(82)

where we define αδOP = δt(1)− δt(0) and compute:

δt(1)− δt(0) =
1

1+ψ−α
α

+ 1
ε

(
1 + ψ

α
+ a1

(
1

ε
− γ
))

(1− κ)(µO − µP ) = αδOP (83)

and note that this is a constant. Finally, we see that δt(0) is given by:

δt(0) =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
(µγ + (1− κ)µP )− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

(a0 + a1(1− κ)µP ) +
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

+

[
1 + ψ

α
+ a1

(
1

ε
− γ
)]

κ log θt +

(
1

ε
− γ
)
f(Qt)

]
(84)

By matching coefficients between Equations 82 and Equation 69, we obtain a0, a1, and f .
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We first match coefficients on log θt to obtain an equation for a1:

a1 =

[
1+ψ
α

+ a1

(
1
ε
− γ
)]
κ

1+ψ−α
α

+ 1
ε

(85)

Under our maintained assumption that
1
ε
−γ

1+ψ−α
α

+ 1
ε

∈ [0, 1), as κ ∈ [0, 1], we have that this has

a unique solution:

a1 =

1+ψ
α
κ

1+ψ−α
α

+ 1
ε

1− ( 1
ε
−γ)κ

1+ψ−α
α

+ 1
ε

(86)

It is moreover positive.

Second, by collecting terms with Qt we obtain an equation for f :

f(Q) =
1
ε
− γ

1+ψ−α
α

+ 1
ε

f(Q) +
ε

ε− 1
log

(
1 +Q

[
exp

{
ε− 1

ε
αδOP

}
− 1

])
(87)

which has a unique solution as
1
ε
−γ

1+ψ−α
α

+ 1
ε

∈ [0, 1) and can be solved to yield:

f(Q) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(
1 +Q

[
exp

{
ε− 1

ε
αδOP

}
− 1

])
(88)

where we observe that δOP depends only on primitive parameters and a1, for which we have

already solved. Finally, by collecting constants, we obtain an equation for a0:

a0 =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
(µγ + (1− κ)µP )− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

(a0 + a1(1− κ)µP ) +
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
+

1

2

ε− 1

ε
σ̂2

(89)

Solving this equation yields:

a0 =
1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

[
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
(µγ + (1− κ)µP )− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)

+

(
1

ε
− γ
)
a1(1− κ)µP +

1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
+

1

2

ε− 1

ε
σ̂2

]
(90)
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which we observe depends only on parameters, a1, and σ̂2. Moreover, σ̂2 depends only on

parameters and a1. Thus, given that we have solved for a1, we have now recovered a0, a1,

and f uniquely and verified that there exists a unique quasi-linear equilibrium. Finally, to

obtain the formula for the best reply of agents, simply substitute a0, a1, and f into Equation

77 and label the coefficients as in the claim.

A.3 Proof of the Claims in Remark 1

We now prove the claims made in Remark 1. We have already shown that there exists a

unique quasi-linear equilibrium. More generally, we seek to rule out an equilibrium of any

other form. To do so, we show that there is a unique equilibrium when fundamentals are

bounded by some M ∈ R, log θt ∈ [−M,M ], log γi ∈ [−M,M ], log θ̃it ∈ [−M,M ], and

eit ∈ [−M,M ].

Lemma 2. When fundamentals are bounded, there exists a unique equilibrium

Proof. To this end, we can recast any equilibrium function log Y (θ, q) as one that solves

the fixed point in Equation 37. In the case where fundamentals are bounded, this can be

accomplished by demonstrating that the implied fixed-point operator is a contraction by

verifying Blackwell’s sufficient conditions. More formally, consider the space of bounded,

real-valued functions C under the L∞-norm and consider the operator VM : C → C given by:

VM(g)(θ,Q) =
ε

ε− 1
logE(θ,Q)

[
exp

{
ε−1
ε

1+ψ−α
α

+ 1
ε

(
log

(
1− 1

ε
1+ψ
α

)

− logE(s,Q)

[
exp

{
−1 + ψ

α
log θit

}]
+ logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}])}]
(91)

The following two conditions are sufficient for this operator to be a contraction: (i) mono-

tonicity: for all g, h ∈ C such that g ≥ h, we have that VM(g) ≥ VM(h) (ii) discounting: there

exists a parameter c ∈ [0, 1) such that for all g ∈ C and a ∈ R+ and VM(g+a) ≤ VM(g) + ca.

Thus, as the space of bounded functions under the L∞-norm is a complete metric space, if

Blackwell’s conditions hold, then by the Banach fixed-point theorem, there exists a unique

fixed point of the operator VM .

To complete this argument, we now verify (i) and (ii). To show monotonicity, observe

that 1
ε
− γ ≥ 0 as ω ≥ 0 and recall that ε > 1. Thus, we have that:

logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}]
≥ logE(s,Q)

[
exp

{(
1

ε
− γ
)
h

}]
(92)
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for all (s,Q). And so VM(g)(θ,Q) ≥ VM(h)(θ,Q) for all (θ,Q). To show discounting, observe

that:

logE(s,Q)

[
exp

{(
1

ε
− γ
)

(g + a)

}]
= logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}]
+

(
1

ε
− γ
)
a (93)

And so:

VM(g + a)(θ,Q) =
ε

ε− 1
logE(θ,Q)

[
exp

{
ε−1
ε

1+ψ−α
α

+ 1
ε

(
log

(
1− 1

ε
1+ψ
α

)

− logE(s,Q)

[
exp

{
−1 + ψ

α
log θit

}]
+ logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}]
+

(
1

ε
− γ
)
a

)}]
= VM(g)(θ,Q) + ωa

(94)

where ω ∈ [0, 1) by assumption. Note that the modulus of contraction ω is precisely

the claimed strategic complementarity parameter in Equation 24. This verifies equilibrium

uniqueness.

Away from the case with bounded fundamentals, the above strategy cannot be used

to demonstrate uniqueness. Even though the fixed-point operator still satisfies Blackwell’s

conditions, the relevant function space now becomes any Lp-space for p ∈ (1,∞) and the

sup-norm over such spaces can be infinite, making Blackwell’s conditions insufficient for V

to be a contraction. In this case, we show that the unique quasi-linear equilibrium in the

unbounded fundamentals case is an appropriately-defined ε-equilibrium for any ε > 0. Let

the unique quasi-linear equilibrium we have guessed and verified be log Y ∗. We say that g

is a ε-equilibrium if

||g − VM(g)||p < ε (95)

where || · ||p is the Lp-norm. In words, g is a ε-equilibrium if its distance from being a fixed

point is at most ε. The following Lemma establishes that Y ∗ is a ε-equilibrium for bounded

fundamentals for any ε > 0 for some bound M :

Lemma 3. For every ε > 0, there exists an M ∈ N such that log Y ∗ is a ε-equilibrium.

Proof. Now extend from C, VM : Lp(R) → Lp(R) as in Equation 91. We observe that

VM is continuous in the limit in M in the sense that VM(g) → V (g) as M → ∞ for all

g ∈ Lp(R). This observation follows from noting that both logE(s,Q)

[
exp

{
−1+ψ

α
log θit

}]
and logE(s,Q)

[
exp

{(
1
ε
− γ
)
g
}]

are convergent pointwise for M → ∞ for all (s,Q). In

Proposition 1, we showed that V (log Y ∗) = log Y ∗. Thus, we have that: VM(log Y ∗) →

70



V (log Y ∗) = log Y ∗, which implies that:

lim
M→∞

|| log Y ∗ − VM(log Y ∗)||p = 0 (96)

which implies that for every ε > 0, there exists a M̄ ∈ N such that:

|| log Y ∗ − VM(log Y ∗)||p < ε ∀M ∈ N : M > M̄ (97)

Completing the proof.

A.4 Proof of Corollary 1

Proof. From Equation 77, we may express:

log xit = cons + b3f(Qt) +
1 + ψ

α
(log γi + κsit) +

(
1

ε
− γ
) 1+ψ

α
κ

1+ψ−α
α

+ 1
ε

1− ( 1
ε
−γ)κ

1+ψ−α
α

+ 1
ε

κsit

1
1+ψ−α

α
+ 1

ε

1 + ψ

α
+

(
1

ε
− γ
) 1+ψ

α
κ

1+ψ−α
α

+ 1
ε

1− ( 1
ε
−γ)κ

1+ψ−α
α

+ 1
ε

 (1− κ)(µO − µP )λit

(98)

We substitute this expression into logLit = 1
α

(log xit − log θit) to write

logLit = − 1

α
log θit + cons + c4f(Qt) + consi

+
1

α

1 + ψ

α
+

(
1

ε
− γ
) 1+ψ

α
κ

1+ψ−α
α

+ 1
ε

1− ( 1
ε
−γ)κ

1+ψ−α
α

+ 1
ε

κ log θt

+
1

α

1
1+ψ−α

α
+ 1

ε

1 + ψ

α
+

(
1

ε
− γ
) 1+ψ

α
κ

1+ψ−α
α

+ 1
ε

1− ( 1
ε
−γ)κ

1+ψ−α
α

+ 1
ε

 (1− κ)(µO − µP )λit

+ ξ′it

(99)

where ξ′it ∼ N(0, σ2
ξ ) and IID. Comparing the above with the definition of αδOP in Equation

83, we see that the coefficient on λit in the above expression is δOP . Subtracting lagged labor

from both sides gives the claimed regression equation. We finally observe from Equation 88

that f(Q) depends on (ε, γ, ψ, α) and δOP . Hence, given (ε, γ, ψ, α), f is identified uniquely

from the studied regression estimate.
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A.5 Proof of Corollary 2

Proof. This is immediate by substituting Equation 38 into Equation 28.

A.6 Proof of Proposition 2

Proof. We prove the three claims in sequence.

(1) The map Tθ : [0, 1]→ [0, 1] is continuous for all θ ∈ Θ as f , PO and PP are continuous

functions. Moreover, it maps a convex and compact set to itself. Thus, by Brouwer’s fixed

point theorem, there exists a Q∗θ such that Q∗θ = Tθ(Q
∗
θ) for all θ ∈ Θ.

(2) To characterize the existence of extremal steady states, observe that Q = 1 is a steady

state for θ if and only if Tθ(1) = PO(ao + a1 log θ + f(1), 1, 0) = 1 and Q = 0 is a steady

state for θ if and only if Tθ(0) = PP (a0 + a1 log θ, 0, 0) = 0. Thus, Q = 1 is a steady state

if and only if P−1
O (1; 1) ≤ a0 + a1 log θ + f(1) and Q = 0 is a steady state if and only if

P−1
P (0; 0) ≥ a0 + a1 log θ. To obtain the result as stated, we re-arrange these inequalities in

terms of log θ and exponentiate.

(3) To analyze the stability of the extremal steady states, observe that if T ′θ(Q
∗) < 1 at

a steady state Q∗, then Q∗ is stable. When it exists (which it does almost everywhere), we

have that:

T ′θ(Q) = PO(a0 + a1 log θ + f(Q), Q, 0)− PP (a0 + a1 log θ + f(Q), Q, 0)

+Q
d

dQ
PO(a0 + a1 log θ + f(Q), Q, 0) + (1−Q)

d

dQ
PP (a0 + a1 log θ + f(Q), Q, 0)

(100)

Thus, for θ < θP and Q = 0:

T ′θ(0) = PO(a0 + a1 log θ, 0, 0)− PP (a0 + a1 log θ, 0, 0)

+
d

dQ
PP (a0 + a1 log θ + f(Q), Q, 0) |Q=0

= PO(a0 + a1 log θ, 0, 0)

(101)

where the second equality follows by observing that all of PP , ∂PP
∂ log Y

, and ∂PP
∂Q

are zero for

θ < θP . Thus, we have that T ′θ(0) < 1 when PO(a0 +a1 log θ, 0, 0) < 1. Moreover, for θ < θP ,

we have that: PO(a0 + a1 log θ, 0, 0) ≤ PO(a0 + a1 log θP , 0, 0) = PO(P−1
P (0; 0), 0, 0). Thus, a

sufficient condition for T ′θ(0) < 1 for θ < θP is that PO(P−1
P (0; 0), 0, 0) < 1.
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For θ > θO and Q = 1, we have that:

T ′θ(1) = PO(a0 + a1 log θ + f(1), 1, 0)− PP (a0 + a1 log θ + f(1), 1, 0)

+
d

dQ
PO(a0 + a1 log θ + f(1), 1, 0) |Q=1

= 1− PP (a0 + a1 log θ + f(1), 1, 0)

(102)

where the second equality follows again by observing that PO = 1 and both ∂PO
∂ log Y

∂PO
∂Q

are zero

for θ > θO. Hence, we have that T ′θ(1) < 1 when PP (a0 +a1 log θ+f(1), 1, 0) > 0. For θ > θO

we have that PP (a0 +a1 log θ+f(1), 1, 0) ≥ PP (a0 +a1 log θO+f(1), 1) = PP (P−1
O (1, 1), 1, 0).

Thus, a sufficient condition for T ′θ(1) < 1 for θ > θO is that PP (P−1
O (1, 1), 1, 0) > 0.

A.7 Proof of Corollary 3

Proof. By Proposition 2, the extremal steady states coexist if and only if θ ∈ [θO, θP ], which

is non-empty if and only if θO ≤ θP which is equivalent to P−1
O (1; 1)− P−1

P (0; 0) ≤ f(1).

A.8 Proof of Lemma 1

Proof. Fix θ ∈ Θ. We first study the SSC-A case. By SSC-A of T we have that there exists

Q̂θ ∈ [0, 1] such that Tθ(Q) > Q for all Q ∈ (0, Q̂θ) and Tθ(Q) < Q for all Q ∈ (Q̂θ, 1). As Tθ

is continuous we have that Tθ(Q̂θ) = Q̂θ. Consider now some Q0 ∈ (0, 1) such that Q0 6= Q̂θ.

We have that Tθ(Q0) > Q̂θ if Q0 < Q̂θ and Tθ(Q0) < Q̂θ if Q0 > Q̂θ. Hence, there exists at

most one Q∗ ∈ (0, 1) such that Tθ(Q
∗) = Q∗. Thus, there exist at most three steady states

Q∗ = 0, Q∗ = Q̂θ, and Q∗ = 1.

To find the basins of attraction of these steady states, fix Q0 ∈ (0, 1) and consider the

sequence {T nθ (Q0)}n∈N. For a steady state Q∗, its basin of attraction is:

Bθ(Q∗) =
{
Q0 ∈ [0, 1] : lim

n→∞
T nθ (Q0) = Q∗

}
(103)

First, consider Q0 ∈ (0, Q̂θ). We now show by induction that T nθ (Q0) ≥ T n−1
θ (Q0) for all

n ∈ N. Consider n = 1. We have that Tθ(Q0) > Q0 as T is SSC-A and Q0 < Q̂θ. Suppose

now that T nθ (Q0) ≥ T n−1
θ (Q0). We have that:

T n+1
θ (Q0) = Tθ ◦ T nθ (Q0) ≥ Tθ ◦ T n−1

θ (Q0) = T nθ (Q0) (104)

by monotonicity of Tθ, which proves the inductive hypothesis. Observe moreover that the

sequence {T nθ (Q0)}n∈N is bounded as T nθ (Q0) ∈ [0, 1] for all n ∈ N. Hence, by the monotone

73



convergence theorem, limn→∞ T
n
θ (Q0) exists. Toward a contradiction, suppose that Q∞0 =

limn→∞ T
n
θ (Q0) > Q̂θ. By SSC-A of T we have that Tθ(Q

∞
0 ) > Q∞0 , but this contradicts that

Q∞0 = limn→∞ T
n
θ (Q0). Thus, we have that Q∞0 = Q̂θ. Hence, (0, Q̂θ) ⊆ Bθ(Q̂θ). Second,

consider Q0 = Q̂θ. We have that Tθ(Q̂θ) = Q̂θ. Thus, Q∞0 = Q̂θ. Hence, Q̂θ ∈ Bθ(Q̂θ).

Third, consider Q0 ∈ (Q̂θ, 1). Following the arguments of the first part, we have that

(Q̂θ, 1) ⊆ Bθ(Q̂θ). Thus, (0, 1) ⊆ Bθ(Q̂θ). Moreover, if Q = 0 or Q = 1 are steady states,

they can only have basins of attraction in [0, 1]\Bθ(Q̂θ), which implies that they are unstable

and can only have basins of attraction {0} and {1}.
The analysis of the SSC-B case follows similarly. By SSC-B of T we have that there

exists Q̂θ ∈ [0, 1] such that Tθ(Q) > Q for all Q ∈ (Q̂θ, 1) and Tθ(Q) < Q for all Q ∈ (0, Q̂θ).

As Tθ is continuous, we have that Tθ(Q̂θ) = Q̂θ. Consider now some Q0 ∈ (0, 1) such that

Q0 6= Q̂θ. Observe that Tθ(Q0) < Q̂θ if Q0 < Q̂θ and Tθ(Q0) > Q̂θ if Q0 > Q̂θ. Hence, there

exists at most one Q∗ ∈ (0, 1) such that Tθ(Q
∗) = Q∗. Thus, there exist at most three steady

states Q∗ = 0, Q∗ = Q̂θ, and Q∗ = 1.

To find the basins of attraction of these steady states, first consider Q0 ∈ (0, Q̂θ). We

now show by induction that T nθ (Q0) ≤ T n−1
θ (Q0) for all n ∈ N. Consider n = 1. We have

that Tθ(Q0) < Q0 as T is SSC-B and Q0 < Q̂θ. Suppose now that T nθ (Q0) ≤ T n−1
θ (Q0). We

have that:

T n+1
θ (Q0) = Tθ ◦ T nθ (Q0) ≤ Tθ ◦ T n−1

θ (Q0) = T nθ (Q0) (105)

by monotonicity of Tθ, which proves the inductive hypothesis. Observe moreover that the

sequence {T nθ (Q0)}n∈N is bounded as T nθ (Q0) ∈ [0, 1] for all n ∈ N. Hence, by the monotone

convergence theorem, limn→∞ T
n
θ (Q0) exists. Finally, toward a contradiction, suppose that

Q∞0 = limn→∞ T
n
θ (Q0) > 0. By SSC-B of T we have that Tθ(Q

∞
0 ) < Q∞0 , but this contradicts

that Q∞0 = limn→∞ T
n
θ (Q0). Thus, we have that Q∞0 = 0. Hence, [0, Q̂θ) ⊆ Bθ(0). Second,

consider Q0 = Q̂θ. We have that Tθ(Q̂θ) = Q̂θ. Thus, Q∞0 = Q̂θ. Hence Q̂θ ∈ Bθ(Q̂θ). Third,

consider Q0 ∈ (Q̂θ, 1]. By the exact arguments of the first part, we have that (Q̂θ, 1] ⊆ Bθ(1).

Observing Bθ(0), Bθ(Q̂θ), and Bθ(1) are disjoint completes the proof.

A.9 Proof of Proposition 3

Proof. By Proposition 1 and substituting the form of the shock process from Equation 47,

we obtain the formula for the output IRF. For the fraction of optimists, we see that:

Q2 = Q̂1PO(a0 + a1 log θ̂ + f(Q̂1), Q̂1, 0) + (1− Q̂1)PP (a0 + a1 log θ̂ + f(Q̂1), Q̂1, 0)

> Q̂1PO(a0 + f(Q̂1), Q̂1, 0) + (1− Q̂1)PP (a0 + f(Q̂1), Q̂1, 0) = Q̂1

(106)
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and Qt = T1(log Yt−1, Qt−1) for t ≥ 3 by iterating forward. That Qt monotonically declines

to Q̂1 follows from Lemma 1 as we are in the SSC-A case. The hump shape is obtained if

log Y1 ≤ log Y2. This corresponds to

log Y1 = a0 + a1 log θ̂ + f(Q̂1) ≤ a0 + f(Q2) = log Y2 (107)

which rearranges to the desired expression.

A.10 Proof of Proposition 4

Proof. We first derive the IRF functions. The formula for the output IRF follows Proposition

3. For the IRF for the fraction of optimists, we simply observe that Q0 = Q1 = 0 and

Q2 = PP (a0 + a1 log θ̂, 0, 0), and that Qt = T1(Qt−1) for t ≥ 3 by iterating forward.

We now describe the properties of the IRFs as a function of the size of the initial shock

θ̂. First, observe that Q2 = PP (a0 + a1 log θ̂, 0, 0). Thus, we have that Q2 = 0 if and only

if P−1
P (0; 0) ≥ a0 + a1 log θ̂ which holds if and only if θ̂ ≤ θP . For any θ̂ > θP it follows

that Q2 > 0. As we lie in the SSC class, by Lemma 1, we have that the steady states

Q = 0, Q = 1, and Q = Q̂1 have basins of attraction given by [0, Q̂1), (Q̂1, 1], {Q̂1}. Thus, if

Q2 < Q̂1, we have monotone convergence of Qt to 0. If Q2 = Q̂1, then Qt = Q̂t for all t ∈ N.

If Q2 > Q̂1, we have monotone convergence of Qt to 1. Moreover, the threshold for θ̂ such

that Q2 = Q̂∗ is exp
{
P−1
P (Q̂1;0)−a0

a1

}
.

Finally, to find the condition such that the IRF is hump-shaped, we observe that this

occurs if and only if f(Q2) > a1 log θ̂ as Qt is monotonically decreasing for t ≥ 2, which is

precisely the claimed condition.

A.11 Proof of Proposition 5

Proof. We prove this result by first constructing fictitious processes for optimism that bound

above and below the true optimism process for all realizations of {θt}t∈N before the stopping

time. We can then use this to bound the stopping times’ distributions in the sense of first-

order stochastic dominance and use this fact to bound the expectations.

First, consider the case where we seek to bound τPO = min{t ∈ N : Qt = 1, Q0 = 0}. In

the model, we have that Qt+1 = T (Qt, νt). Fix a path of fundamentals and narrative shocks

{νt}t∈N = {θt, εt}t∈N and define the fictitious Q process as:

Qt+1 = I[T (Qt, νt) = 1] (108)

with Q0 = 0. We prove by induction that Qt ≤ Qt for all t ∈ N. Consider first the base case
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that t = 1:

Q1 = I[T (0, ν0) = 1] ≤ T (0, ν0) = Q1 (109)

Toward the inductive hypothesis, suppose that Qt−1 ≤ Qt−1. Then we have that:

Qt = I[T (Qt−1, νt−1) = 1] ≤ I[T (Qt−1, νt−1) = 1] ≤ T (Qt−1, νt−1) = Qt (110)

where the first inequality follows by the property that T (·, ν) is a monotone increasing

function.

As Qt ≤ Qt for all t ∈ N, we have that:

τPO = min{t ∈ N : Qt = 1, Q0 = 0} ≥ min{t ∈ N : Qt = 1, Q0 = 0} = τPO (111)

Else, we would have at τPO that QτPO < QτPO
, which is a contradiction.

We now have a pathwise upper bound on τPO. We now characterize the distribution of

the bound. Observe that the possible sample paths for {Qt}t∈N until stopping are given by

the set:

GPO = {(0(n−1), 1)} : n ≥ 1} (112)

Moreover, conditional on Qt−1 = 0, the distribution of Qt is independent of {νs}s≤t−1.

Thus, the fictitious stopping time τPO has a geometric distribution with parameter given by

P[Qt+1 = 1|Qt = 0]. This parameter is given by:

P[Qt+1 = 1|Qt = 0] = P [PP (a0 + a1 log θt, 0, εt) = 1]

= P

[
θt ≥ exp

{
P †P (1; 0, εt)− a0

a1

}]

= 1− EG

[
H

(
exp

{
P †P (1; 0, ε)− a0

a1

})] (113)

Thus, we have established a stronger result and provided a distributional bound on the

stopping time:

τPO ≺FOSD τPO ∼ Geo

(
1− EG

[
H

(
exp

{
P †P (1; 0, ε)− a0

a1

})])
(114)

An immediate corollary is that:

TPO = E[τPO] ≤ E[τPO] =
1

1− EG
[
H
(

exp
{
P †P (1;0,ε)−a0

a1

})] (115)
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We can apply appropriately adapted arguments for the other case, where we now define:

Q
t+1

= I[T (Q
t
, νt) 6= 0] (116)

with Q
0

= 1. In this case, by an analogous induction have that Q
t
≥ Qt for all t ∈ N for

all sequences {νt}t∈N. And so, we have that if Q
t

has reached 0 then so too has Qt. The

possible sample paths in this case are:

GOP = {(1(n−1), 0)} : n ≥ 1} (117)

So again the stopping time has a geometric distribution, this time with parameter:

P[Qt+1 = 0|Qt = 1] = P

[
θt ≤ exp

{
P †O(0; 1, εt)− a0 − f(1)

a1

}]

= EG

[
H

(
exp

{
P †O(0; 1, ε)− a0 − f(1)

a1

})] (118)

And so we have:

TOP ≤
1

EG
[
H
(

exp
{
P †O(0;1,ε)−a0−f(1)

a1

})] (119)

It remains to show that these bounds are tight. To do so, we derive a law H such that

Qt = Qt = Q
t

for all t ∈ N. Concretely, define the set:

Θ∗ =

(
−∞, exp

{
P †O(0; 1, 0)− a0 − f(1)

a1

}]
∪
[

exp

{
P †P (1; 0, 0)− a0

a1

}
,∞
)

(120)

and suppose that θ takes values only in this set, where the two sub-intervals are disjoint

as P †O(0; 1, 0) − P †P (1; 0, 0) ≤ f(1). Moreover, suppose that narrative shocks equal zero

with probability one. In this case, starting from Qt = 1, the only possible values for Qt+1

are zero and one. Moreover, starting from Qt = 0, the only possible values for Qt+1 are

zero and one. Thus, in either case, Qt = Qt = Q
t

pathwise and TOP = T ∗OP and TPO =

T ∗PO. It is worth noting that such a distribution can be obtained by considering a limit of

normal-mixture distributions. Concretely, suppose that H is derived as a mixture of two

normal distributions N(µA, σ
2) and N(µB, σ

2) for µA < exp
{
P †O(0;1,0)−a0−f(1)

a1

}
and µB >

exp
{
P †P (1;0,0)−a0

a1

}
. Taking the limit as σ → 0, the support of H converges to being contained

within Θ∗.
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B Model Extensions

This appendix covers several model extensions. First, we study equilibrium dynamics under

a benchmark model of Bayesian model updating and contrast these predictions with those

obtained in our main analysis (B.1). Second, we theoretically characterize and quantify the

normative implications of narrative fluctuations (B.2). Third, fourth, fifth, and sixth we

extend the baseline model to respectively incorporate a continuum of different levels of opti-

mism (B.3), narratives about idiosyncratic fundamentals (B.4), multi-dimensional narratives

and persistent fundamentals (B.5), and narrative updating that depends on idiosyncratic fun-

damentals (B.6). In each case, we characterize equilibrium dynamics and show how our main

theoretical insights extend. Seventh, we show how endogenous cycles and chaotic dynamics

can obtain when agents are contrarian and implement an empirical test for their presence

(B.7). Eighth, we highlight the role of higher-order beliefs and show how our analysis could

generalize to other settings by deriving a similar law of motion for optimism in abstract, lin-

ear beauty contest games à la Morris and Shin (2002) (B.8). Finally, we sketch an extension

of our abstract framework to allow for persistent idiosyncratic states and adjustment costs

and discuss the implications for our measurement (B.9).

B.1 Comparison to the Bayesian Benchmark

Consider an alternative model in which each agent i initially believes the optimistic model

is correct with probability λi0 ∈ (0, 1), and subsequently updates this probability by ob-

serving aggregate output and aggregate optimism and applying Bayes’ rule under rational

expectations. Formally, this corresponds to the following law of motion for Qt:

Qt+1 =

∫
[0,1]

Pi[µ = µO|{log Yj, Qj}tj=0] di (121)

where Pi[µ = µ0|∅] = λi0 for some λi0 ∈ (0, 1) for all i ∈ [0, 1], and conditional probabilities

are computed under rational expectations with knowledge of {λi0}i∈[0,1]. We define the log-

odds ratio of an agent’s belief as Ωit = log λit
1−λit . The following Proposition characterizes the

dynamics of agents’ subjective models under the Bayesian benchmark:

Proposition 8 (Dynamics under the Bayesian Benchmark). Each agent’s log-odds ratio

follows a random walk with drift, or Ωi,t+1 = Ωit+a+ξt, where a = EH
[

(log θt−µP )2−(log θt−µO)2

σ2

]
and ξt is an IID, mean-zero random variable. The economy converges almost surely to either

extreme optimism (a > 0) or extreme pessimism (a < 0). The dynamics of the economy are
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asymptotically described by:

log Yt =

a0 + a1 log θt if a < 0,

a0 + a1 log θt + f(1) if a > 0.
(122)

Thus, the economy does not feature steady state multiplicity, hump-shaped or discontinuous

IRFs, or the possibility for boom-bust cycles.

Proof. The equilibrium Characterization of Proposition 1 still holds. Moreover, Q0 is known

to all agents. Thus, they can identify θ0 as:

θ0 =
log Y0 − a0 − f(Q0)

a1

(123)

Thus, we have that λi1 = P[µ = µO|θ0, λi0]. Moreover, all agents know that Q1 =
∫

[0,1]
λi1 di.

Thus, agents can sequentially identify θt by observing only {Yj}j≤t (and not {Qj}j≤t) by

computing:

θt =
log Yt − a0 − f(Qt)

a1

(124)

Thus, we can describe the evolution of agents’ beliefs by computing:

λi,t+1 = Pi[µ = µO|{θj}tj=1] = λi,t+1 = Pi[µ = µO|{Yj}tj=1] (125)

By application of Bayes rule, we obtain:

λi,t+1 = P[µ = µO|θt, λi,t] =
fO(θt)λi,t

fO(θt)λi,t + fP (θt)(1− λi,t)
(126)

which implies that:

λi,t+1

1− λi,t+1

=
f(log θt|µ = µO)

f(log θt|µ = µP )

λi,t
1− λi,t

= exp

{
(log θt − µP )2 − (log θt − µO)2

σ2

}
λi,t

1− λi,t

(127)

Defining Ωit = log
λi,t

1−λi,t and a = EH
[

(log θt−µP )2−(log θt−µO)2

σ2

]
and ξt = (log θt−µP )2−(log θt−µO)2

σ2 −
a, we then have that:

Ωi,t+1 = Ωi,t +
(log θt − µP )2 − (log θt − µO)2

σ2

= Ωit + a+ ξt

(128)
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which is a random walk with drift, with the drift and stochastic increment claimed in the

statement. Iterating, dividing by t, and applying the law of large numbers, we obtain:

Ωi,t

t
=

1

t
Ωi,0 +

t− 1

t
a+

1

t

t∑
i=1

ξi →a.s. a (129)

Hence, almost surely, we have that Qt → 1 if a > 0 and Qt → 0 if a < 0.

Hence, the dynamics are asymptotically described by Proposition 1 with Qt = 1 if a > 0

and Qt = 0 if a < 0. The resulting properties for output follow immediately from combining

this characterization for Qt with the characterization in our main analysis of equilibrium

output conditional on optimism and fundamentals (Proposition 1), which continues to hold

in the model of this appendix.

The optimist fraction Q converges to either 0 or 1 in the long run because one model

is unambiguously better-fitting, and this will be revealed with infinite data. Moreover, the

log-odds ratio converges linearly and so the odds ratio in favor of the better fitting model

converges exponentially quickly. Thus the Bayesian benchmark model makes a prediction

that is at odds with our finding of cyclical dynamics for aggregate optimism (Figure 1), and

moreover, in the long run, rules out the features of macroeconomic dynamics that we derive

in Section 6 as consequences of the endogenous evolution of narrative optimism.

B.2 Welfare Implications

In this appendix, we derive the normative implications of narratives for the economy.

Theory. The following result characterizes welfare along any path for the fraction of opti-

mists in the population and the conditions under which a steady state of extreme optimism

is preferred to one of extreme pessimism:

Proposition 9 (Narratives and Welfare). For any path of aggregate optimism Q = {Qt}∞t=0,

aggregate welfare is given by

U(Q) = U∗C

∞∑
t=0

βt exp {(1− γ)f(Qt)}

− U∗L
∞∑
t=0

βt (Qt exp{(1 + ψ)d2}+ (1−Qt)) exp {(1 + ψ)d3f(Qt)}
(130)

for some positive constants U∗C, U∗L, d2 and d3 that are provided in the proof of the result.

Thus, there is higher welfare in an optimistic steady state than in a pessimistic steady state
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if and only if
U∗C
U∗L
× exp {(1− γ)f(1)} − 1

exp {(1 + ψ)(d2 + d3f(1))} − 1
> 1 (131)

Moreover, when the pessimistic narrative is correctly specified, extreme optimism is welfare-

equivalent to an ad valorem price subsidy for intermediate goods producers of:

τ ∗ = exp

{
(1− ω)

(
1 + ψ − α

α
+

1

ε

)
f(1)

}
− 1 (132)

Proof. We have that welfare for any path of optimism Q = {Qt}t∈N is given by:

U(Q) =
∞∑
t=0

βt
(
EH
[
Ct(Qt, θt)

1−γ

1− γ

]
− EH

[∫
[0,1]

Lit(γi, sit, Qt)
1+ψ

1 + ψ
di

])
(133)

By market clearing, we have that Ct = Yt for all t. Thus, using the formula for equilibrium

aggregate output from Proposition 1 and our assumption that log θt is Gaussian under H,

we have that the consumption component of welfare is given by:

EH
[
C1−γ
t (Qt, θt)

1− γ

]
= EH

[
1

1− γ exp {(1− γ) log Y (Qt, θ)}
]

= EH
[

1

1− γ exp {(1− γ) (a0 + a1 log θ + f(Qt))}
]

=
1

1− γ exp

{
(1− γ) (a0 + a1µH + f(Qt)) +

1

2
a2

1σ
2
H

}
=

1

1− γ exp

{
(1− γ) (a0 + a1µH) +

1

2
a2

1σ
2
H

}
exp {(1− γ)f(Qt)}

= U∗C exp {(1− γ)f(Qt)}

(134)

From Proposition 1, we moreover have that labor employed by each firm can be written as:

Lit = d1 log θt + d2λit + d3f(Qt) + vit (135)

where vit is Gaussian and IID over i. Hence given θ and Qt:∫
[0,1]

Lit(γi, sit, Qt)
1+ψ

1 + ψ
di

=
1

1 + ψ
(Qt exp{(1 + ψ)d2}+ (1−Qt))

× exp

{
(1 + ψ)(d1 log θ + µv + d3f(Qt)) +

1

2
(1 + ψ)2σ2

v

} (136)

82



Hence, the expectation over θ is given by:

EH
[∫

[0,1]

Lit(γi, sit, Qt)
1+ψ

1 + ψ
di

]
=

1

1 + ψ
(Qt exp{(1 + ψ)d2}+ (1−Qt))

× exp {(1 + ψ)d3f(Qt)} exp

{
(1 + ψ)(d1µH + µv) +

1

2
(1 + ψ)2(σ2

v + d2
1σ

2
H)

}
= U∗L (Qt exp{(1 + ψ)d2}+ (1−Qt)) exp {(1 + ψ)d3f(Qt)}

(137)

And so total welfare under narrative path Q is given by:

U(Q) = U∗C

∞∑
t=0

βt exp {(1− γ)f(Qt)}

− U∗L
∞∑
t=0

βt (Qt exp{(1 + ψ)d2}+ (1−Qt)) exp {(1 + ψ)d3f(Qt)}
(138)

The final inequality follows by noting that f(0) = 0 and rearranging this expression.

Now consider the benchmark model but where, without loss of generality, all agents are

pessimistic Qt = 0 and a planner levies an ad valorem subsidy. That is, when the consumer

price is pCit = Y
1
ε
t x
− 1
ε

it , the price received by the producer is pPit = (1 + τ)pCit . Under this

subsidy, each producer’s first-order condition is:

log xit =
1

1+ψ−α
α

+ 1
ε

(
log

(
1− 1

ε
1+ψ
α

)
− logEit

[
exp

{
−1 + ψ

α
log θit

}]

+ logEit
[
exp

{(
1

ε
− γ
)

log Yt

}])
+ Ξ(τ)

(139)

where Ξ(τ) = 1
1+ψ−α

α
+ 1
ε

log(1 + τ). By identical arguments to Proposition 1, we have that

there is a unique quasi-linear equilibrium, where:

log Y (θ, τ) = a0 + a1 log θ +
1

1− ωΞ(τ) (140)

and a0 and a1 are as in Proposition 1. Hence, in this equilibrium we have that:

log xit(τ) = log xit(0) +
1

1− ωΞ(τ) (141)
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Which implies that:

logLit(τ) = logLit(0) +
1

α

1

1− ωΞ(τ) (142)

And so, welfare under the subsidy τ is given by:

U(τ) = U∗C

∞∑
t=0

βt exp

{
(1− γ)

1

1− ωΞ(τ)

}
− U∗L

∞∑
t=0

βt exp

{
(1 + ψ)d3

1

1− ωΞ(τ)

} (143)

as d3 = 1
α

. Hence:

U(1) = U(τ ∗) (144)

where τ ∗ is such that 1
1−ωΞ(τ ∗) = f(1). Hence:

τ ∗ = exp

{
(1− ω)

(
1 + ψ − α

α
+

1

ε

)
f(1)

}
− 1 (145)

Completing the proof.

This result sheds light on the potential for non-fundamental optimism to increase aggre-

gate welfare. In the presence of the product market monopoly and labor market monopsony

distortions, intermediates goods firms under-hire labor and under-produce goods. As a result,

if irrational optimism causes them to produce more output, but not so much that the house-

hold over-supplies labor, then it has the potential to be welfare improving. The final part

of the proposition then reduces this question to assessing if the implied optimism-equivalent

subsidy is less than the welfare-optimal subsidy. Thus, optimism in the economy can serve

the role of undoing monopoly frictions and thereby has the potential to be welfare-improving,

even when misspecified.

Quantification. Proposition 9 can be directly applied in our numerical calibration from

Section 7 to calculate the welfare effects of narrative optimism without approximation. We

calculate the average payoff of the representative household under three scenarios. The first

corresponds to the calibrated narrative dynamics in simulation, under the assumption that

the pessimistic model is correctly specified.37 The second is a counterfactual scenario with

permanent extreme optimism, or Qt ≡ 1 for all t. The third is a counterfactual scenario with

permanent extreme pessimism, or Qt ≡ 0 for all t, and an ad valorem subsidy of τ to all

producers. We use the third scenario to translate the first and second into payoff-equivalent

37Relative to the positive analysis, the normative analysis requires two additional model parameters. We
set the idiosyncratic component of productivity to have unit mean and zero variance.
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subsidies. We find that both contagious and extreme optimism are welfare-increasing relative

to extreme pessimism in autarky (i.e, τ = 0). In payoff units, they correspond respectively to

equivalent subsidies of 1.33% and 2.59%. Our finding of an overall positive welfare effect for

contagious optimism suggests that, in our macroeconomic calibration, losses from inducing

misallocation are more than compensated by level increases in output.

B.3 Continuous Narratives

Our main analysis featured two levels of optimism. However, much of our analysis generalizes

to a setting with a continuum of levels of optimism. For simplicity, in this section we

abstract from optimism shocks. The model is as in Section 5, but now µ ∈ [µP , µO] and the

distribution of narratives is given by Qt ∈ ∆([µP , µO]). The probabilistic transition between

models is now given by a Markov kernel P : [µP , µO]×Y×∆2([µP , µO])→ ∆([µP , µO]) where

Pµ′(µ, log Y,Q) is the density of agents who have model µ who switch to µ′ when aggregate

output is Y and the distribution of narratives is Q.

Characterizing Equilibrium Output. By modifying the guess-and-verify arguments

that underlie Proposition 1, we can obtain an almost identical representation of equilibrium

aggregate output:

Proposition 10 (Equilibrium Characterization with Continuous Narratives). There exists

a quasi-linear equilibrium:

log Y (log θt, Qt) = a0 + a1 log θt + f(Qt) (146)

Moreover, the density of narratives evolves according to the following difference equation:

dQt+1(µ′) =

∫ µO

µP

Pµ′(µ, a0 + a1 log θt + f(Qt), Qt)dQt(µ) (147)

Proof. By appropriately modifying the steps of the proof of Proposition 1, the result follows.

Throughout, simply replace λitµO+(1−λit)µP with µ̃it ∼ Qt and λit with µ̃it as appropriate.

The proof follows as written until the aggregation step. At this point, we instead obtain:

log Yt = δt(µP ) +
1

2

ε− 1

ε
σ̂2 +

ε

ε− 1
log

(∫ µO

µP

exp

{
ε− 1

ε
(δt(µ̃)− δt(µP ))

}
dQt(µ̃)

)
(148)

where δt(µP ) = δt(0) and δt(µ̃) − δt(µP ) = αδOP µ̃−µP
µO−µP

. Hence, we have that a0 and a1 are
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as in Proposition 1 and f is instead given by:

f(Q) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(∫ µO

µP

exp

{
ε− 1

ε
αδOP

µ̃− µP
µO − µP

}
dQ(µ̃)

)
(149)

Completing the proof.

Importantly, observe that we still obtain a marginal representation in terms of the partial

equilibrium effect of going from full pessimism to full optimism on hiring δOP , as we have

empirically estimated.

Equilibrium Dynamics. We have seen that a continuum of models poses no difficulty

for the static analysis. The challenge for the dynamic analysis is that the state variable,

the evolution of which is fully characterized by Proposition 10, is now infinite-dimensional.

This notwithstanding, by use of approximation arguments, we can reduce the dynamics to

an essentially identical form to that which we have studied in the main text.

To this end, define the cumulant generating function (CGF) of the cross-sectional distri-

bution of narratives as:

KQ(τ) = log (EQ[exp{τ µ̃}]) (150)

We therefore have that log (EQ[exp{τ(µ̃− z)}]) = KQ(τ) − τz. It follows by Equation 149

that:

f(Q) =
ε
ε−1

1− ω

[
KQ

(
ε− 1

ε
αδOP

1

µO − µP

)
− ε− 1

ε
αδOP

µP
µO − µP

]
(151)

By Maclaurin series expansion, we can express the CGF to first-order as:

KQ(τ) = µQτ +O(τ 2) (152)

We therefore have that:

f(Q) =
1

1− ωαδ
OP µQ − µP
µO − µP

+O

((
ε− 1

ε
αδOP

1

µO − µP

)2
)

(153)

We now can express the static, general equilibrium effects in terms of mean of the narrative

distribution. With some abuse of notation, we now write f(µQ) = f(Q). Of course, this

CGF-based approach would allow one to consider higher-order effects through the variance,

skewness, kurtosis, and higher cumulants as desired.

In the next steps, we provide conditions on updating that allow us to express the dy-

namics solely in terms of the mean of the narrative distribution. To do this, we assume

that Pµ′(µ, log Y,Q) = Pµ′(µ
′′, log Y, µQ) for all Q ∈ ∆2([µP , µO]) and all µ, µ′, µ′′ ∈ [µP , µO].
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This is tantamount to assuming no stubbornness (all agents update the same regardless of

the model they start with) and that contagiousness only matters via the mean. Under this

assumption, we can write Pµ′(log Y (log θ, µQ), µQ) and express the difference equation as:

dQt+1(µ′) =

∫ µO

µP

Pµ′(a0 + a1 log θt + f(µQ,t), µQ,t)dQt(µ)

= Pµ′(a0 + a1 log θt + f(µQ,t), µQ,t)

(154)

It then suffices to take the mean of Qt+1 to express the system in terms of the one-dimensional

state variable µQ,t:

µQ,t+1 = T (µQ,t, θt) =

∫ µO

µP

µ′Pµ′(a0 + a1 log θt + f(µQ,t), µQ,t)dµ
′ (155)

Which is simply a continuous state analog of the difference equation expressed in Corollary

2 expressed in terms of average beliefs.

Steady State Multiplicity. We now obtain the analogous characterization of extremal

steady state multiplicity in this setting, i.e., when it is possible that all agents being maxi-

mally pessimistic and all agents being maximally optimistic are simultaneously deterministic

steady states. To this end, define the following two inverses:

P̂−1(x;µQ) = sup{Y : P (Y,Q) = δx}
P̌−1(x;µQ) = inf{Y : P (Y,Q) = δx}

(156)

where δx denotes the Dirac delta function on x. We define analogous objects to the previous

θO and θP :

θO = exp

{
P̌−1(µO;µO)− a0 − f(1)

a1

}
, θP = exp

{
P̂−1(µP ;µP )− a0 − f(1)

a1

}
(157)

The following result establishes that these thresholds characterize extremal multiplicity:

Proposition 11 (Steady State Multiplicity with Continuous States). Extreme optimism

and pessimism are simultaneously deterministic steady states for θ if and only if θ ∈ [θO, θP ],

which is non-empty if and only if

P̌−1(µO;µO)− P̂−1(µP ;µP ) ≤ f(1) (158)

Proof. This follows exactly the same steps as the proofs of Proposition 2 and Corollary 3,

replacing the appropriate inverses defined above.
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Thus, the same conditions that give rise to multiplicity with binary narratives obtain

with a continuum of levels of optimism. Indeed, observe that restricting to first-order ap-

proximations above was unnecessary. We could have considered an arbitrary order, say k, of

approximation of the CGF and obtained a system of difference equations for the first k cu-

mulants. Proposition 11 would still hold as written, as under the extremal steady states, all

higher cumulants are identically zero and remain so under the provided condition. Naturally,

however, the general dynamics only reduce to those resembling the simple model under the

first-order approximation. Nevertheless, we observe that this is a first-order approximation

to the exact equilibrium dynamics and not simply an approximation of the dynamics of an

approximate equilibrium.

B.4 Narratives About Idiosyncratic Fundamentals

In the main analysis, we assumed that narratives described properties of aggregate fun-

damentals. In this section, we characterize equilibrium dynamics when narratives describe

properties of idiosyncratic fundamentals. Concretely, we now instead suppose that all agents

believe that log θt ∼ N(0, σ2), or agree about the distribution of aggregate productivity.

Moreover, as in the baseline, all agents believe that others’ idiosyncratic productivity follows

log θ̃jt ∼ N(0, σ2
θ̃
) for all j 6= i. However, agents disagree about the mean of their own id-

iosyncratic productivity: optimistic agents believe that log θ̃it ∼ N(µO, σ
2
θ̃
) while pessimistic

agents believe that log θ̃it ∼ N(µP , σ
2
θ̃
). The rest of the model is identical.

In this context, dynamics are identical conditional on the static relationship between

output and narratives. Moreover, the static relationship between output and narratives is

now identical (up to a constant) conditional on estimating the partial equilibrium effect of

optimism on hiring. This is formalized by the following result:

Proposition 12 (Equilibrium Characterization with Narratives About Idiosyncratic Fun-

damentals). There exists a unique equilibrium such that:

log Y (log θt, Qt) = ã0 + a1 log θt + f̃(Qt) (159)

for coefficients ã0 and a1 > 0, and a strictly increasing function f , where a1 is identical to

that from Proposition 1 and

f̃(Q) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(
1 +Q

[
exp

{
ε− 1

ε
αδ̃OP

}
− 1

])
(160)

where δ̃OP is defined in Equation 161.
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Proof. The proof follows exactly the steps of the proof of Proposition 1 where the aggre-

gate narrative is replaced with an idiosyncratic one. To be concrete, the computation of

logEit
[
θ
− 1+ψ

α
it

]
and the method of aggregation are identical to those in the proof of Proposi-

tion 1. The only difference is in the computation of logEit
[
Y

1
ε
−γ

t

]
. Now, Equation 74 differs

in that µit = log γi + κsit. Tracking this through to Equation 78, lines 1, 2, 3, and 5 are

identical and line 4 differs only in that the term (1−κ)[λitµO + (1−λit)µP ] is now set equal

to zero. The analysis then follows up to Equation 83, at which point we have that the exact

formula for δOP changes and is now given by:

αδ̃OP =
1+ψ
α

1+ψ−α
α

+ 1
ε

(1− κ)(µO − µP ) (161)

The formula for δt(0) is identical except for in the second line where the term a1(1−κ)µP is

now equal to zero. The formula for a1 remains the same. Conditional on δ̃OP , the formula

for f remains the same. The formula for a0 is identical except for the second line where the

term (1/ε− γ)a1(1− κ)µP is now equal to zero.

This Proposition makes clear that output differs in this case only up to an intercept

and in changing the mapping from structural parameters to the partial-equilibrium effect of

optimism on hiring. Nonetheless, interpreted via the model above, our empirical exercise

directly identifies the now-relevant parameter δ̃OP . As a result, neither our theoretical nor

quantitative analysis is sensitive to making narratives be about idiosyncratic conditions. The

only difference is that the point calibrations for κ and (µO − µP ) would change, while the

aggregate dynamics would remain identical.

B.5 Multi-Dimensional Narratives and Persistent States

Our baseline model featured two narratives regarding the mean of fundamentals and tran-

sitory fundamentals, but we live in a world of many competing narratives regarding many

aspects of reality and potentially persistent fundamentals. In this extension, we broaden

our analysis to study a class of three-dimensional narratives, which is essentially exhaustive

within the Gaussian class. For simplicity, we abstract from narrative shocks in this analy-

sis. Concretely, suppose that agents believe that the aggregate component of fundamentals

follows:

log θt = (1− ρ)µ+ ρ log θt−1 + σνt (162)

with νt ∼ N(0, 1) and IID. Narratives now correspond to a vector of (µ, ρ, σ), indexing the

mean, persistence and variance of the process for fundamentals. The set of narratives can
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therefore be represented by {(µk, ρk, σk)}k∈K. We restrict that agents place Dirac weights on

this set, so that they only ever believe one narrative at a time, and let Qt,k be the fraction

of agents who believe narrative (µk, ρk, σk) at time t. Finally, we assume that agents face

the same signal-to-noise ratio κ, regardless of the narrative that they hold.38 Together,

these assumptions ensure that agents’ posteriors are normal and place a common weight on

narratives when agents form their expectations of fundamentals.

By modifying the functional guess-and-verify arguments from Proposition 1, we charac-

terize equilibrium output in this setting in the following result:

Proposition 13 (Equilibrium Characterization with Multi-Dimensional Narratives and Per-

sistence). There exists a quasi-linear equilibrium:

log Y (log θt, log θt−1, Qt) = a0 + a1 log θt + a2 log θt−1 + f(Qt, θt−1) (163)

for some a1 > 0, a2 ≥ 0, and f . In this equilibrium, the distribution of narratives in the

population evolves according to:

Qt+1,k =
∑
k′∈K

Qt,k′Pk′(k, a0 + a1 log θt + a2 log θt−1 + f(Qt, θt−1), Qt) (164)

Proof. We follow the same steps as in the proof of Proposition 1, appropriately adapted to

this richer setting. First, we guess an equilibrium of the form:

log Y (log θt, log θt−1, Qt) = a0 + a1 log θt + a2 log θt−1 + f(Qt, θt−1) (165)

To verify that this is an equilibrium, we need to compute agents’ best replies under this con-

jecture, aggregate them, and show that they are consistent with this guess once aggregated.

We first find agents’ posterior beliefs given narrative weights. Let E denote the standard

basis for RK with k-th basis vector denoted by

ek = {0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
K−k

} (166)

We have that λit = ek for some k ≤ K. Under this narrative loading, we have that agent’s

posteriors are given by:

log θit|λit, sit ∼ N
(
log γi + κsit + (1− κ)µ(λit, θt−1), σ2

θ|s(λit) + σ2
θ̃

)
(167)

38Formally, this means that the variance of the noise in agents’ signals satisfies σ2
ε,k ∝ σ2

k across narratives.
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with:

µ(ek, θt−1) = (1− ρk)µk + ρk log θt−1

σ2
θ|s(ek) =

1
1
σ2
k

+ 1
σ2
ε,k

κ =
1

1 +
σ2
ε,k

σ2
k

(168)

for all k ≤ K,where κ does not depend on k as σ2
ε,k ∝ σ2

k. Hence, we can compute agents’

best replies by evaluating:

logEit
[
θ
− 1+ψ

α
it

]
= −1 + ψ

α
(log γi + κsit + (1− κ)µ(λit, θt−1)) +

1

2

(
1 + ψ

α

)2 (
σ2
θ|s(λit) + σ2

θ̃

)
(169)

logEit
[
Y

1
ε
−γ

t

]
=

(
1

ε
− γ
)

(a0 + a1 (κsit + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt, θt−1))

+
1

2

(
1

ε
− γ
)2

a2
1σ

2
θ|s(λit)

(170)

By substituting this into agents’ best replies, we obtain:

log xit =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
[log γi + κsit + (1− κ)µ(λit, θt−1)]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s(λit) + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κsit + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt, θt−1)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s(λit)

]
(171)

which we observe is conditional normally distributed as log xit|λit ∼ N(δt(λit), σ̂
2) with σ̂2
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as in Equation 79 and:

δt(ek) =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
[log γi + κ log θt + (1− κ)µ(ek, θt−1)]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s(ek) + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κ log θt + (1− κ)µ(ek, θt−1)) + a2 log θt−1 + f(Qt, θt−1)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s(ek)

]
(172)

for all k ≤ K. Aggregating these best replies, using Equation 80, we obtain that:

log Yt =
ε

ε− 1
logEt

[
Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]]

=
ε

ε− 1
log

(∑
k

Qt,k exp

{
ε− 1

ε
δt(ek) +

1

2

(
ε− 1

ε

)2

σ̂2

})

= δt(e1) +
1

2

ε− 1

ε
σ̂2 +

ε

ε− 1
log

(∑
k

Qt,k exp

{
ε− 1

ε
(δt(ek)− δt(e1))

}) (173)

where σ̂2 is a constant, δt(e1) depends linearly on log θt and log θt−1 and δt(ek)− δt(e1) does

not depend on log θt for all k ≤ K and can therefore be written as δk1(θt−1). Moreover, by

matching coefficients, we obtain that a1 is the same as in the proof of Proposition 1. And

we find that f must satisfy:

f(Q, θt−1) =
1
ε
− γ

1+ψ−α
α

+ 1
ε

f(Q, θt−1) +
ε

ε− 1
log

(∑
k

Qt,k exp

{
ε− 1

ε
δk1(θt−1)

})
(174)

and so:

f(Q, θt−1) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(∑
k

Qt,k exp

{
ε− 1

ε
δk1(θt−1)

})
(175)

Completing the proof.

In the multidimensional narrative case with persistence, the past value of fundamentals

interacts non-linearly with the cross-sectional narrative distribution in affecting aggregate

output. However, without more structure, the properties of the dynamics generated by this
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multi-dimensional system are essentially unrestricted.

B.6 Persistent Idiosyncratic Shocks and Belief Updating

We now extend the analysis from Section B.5 to the case where agents’ idiosyncratic states

drive narrative updating and are persistent. Concretely, in that setting, we let Pk′ depend

on (Yt, Qt, θ̃it) and idiosyncratic productivity shocks evolve according to an AR(1) process:

log θ̃it = ρθ̃ log θ̃i,t−1 + ζit (176)

where 0 < ρθ̃ < 1 and ζit ∼ N(0, σ2
ζ ). We let Fθ̃ denote the stationary distribution of θ̃it,

which coincides with the cross-sectional marginal distribution of θ̃it for all t ∈ N.

The additional theoretical complication these two changes induce is that the marginal

distribution of narratives Qt is now insufficient for describing aggregate output. This is

because narratives λit and idiosyncratic fundamentals θ̃it are no longer independent as λit

and θ̃it both depend on θ̃it−1. The relevant state variable is now the joint distribution of

narratives and idiosyncratic productivity Q̌t ∈ ∆(Λ × R). We denote the marginals as Qt

and Fθ̃, and the conditional distribution of narratives given θ̃ as Q̌t,k|θ̃ =
Q̌t,k(θ̃)

fθ̃(θ̃)
.

Proposition 14 (Equilibrium Characterization with Multi-Dimensional Narratives, Aggre-

gate and Idiosyncratic Persistence, and Idiosyncratic Narrative Updating). There exists a

quasi-linear equilibrium:

log Y (log θt, log θt−1, Q̌t) = a0 + a1 log θt + a2 log θt−1 + f(Q̌t, θt−1) (177)

for some a1 > 0, a2 ≥ 0, and f .

Proof. This proof follows closely that of Proposition 13. Under narrative loading λit, we

have that the agent’s posterior regarding log θit is given by:

log θit|θ̃it−1, λit, sit ∼ N
(

log γi + ρθ̃ log θ̃it−1 + κsit + (1− κ)µ(λit, θt−1), σ2
θ|s(λit) + σ2

ξ

)
(178)

where µ(λit, θt−1), κ, and σ2
θ|s(λit) are as in Proposition 13. Then substitute log γi + ρθ̃θ̃it−1

for log γi and follow the Proof of Proposition 13 until the aggregation step (Equation 173).
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We now instead have that:

log Yt =
ε

ε− 1
logEt

[
Et
[
exp

{
ε− 1

ε
log xit

}
|θ̃it−1, λit

]]
=

ε

ε− 1
logEt

[
exp

{
ε− 1

ε
δt(ek, θ̃it−1) +

1

2

(
ε− 1

ε

)2

σ̂2

}]

=
ε

ε− 1
log

(∫ ∑
k

Q̌t,k|θ̃ exp

{
ε− 1

ε
δt(ek, θ̃) +

1

2

(
ε− 1

ε

)2

σ̂2

}
dFθ̃(θ̃)

)
= δt(e1, 1) +

1

2

ε− 1

ε
σ̂2

+
ε

ε− 1
log

(∫ ∑
k

Q̌t,k|θ̃ exp

{
ε− 1

ε

(
δt(ek, θ̃)− δt(e1, 1)

)}
dFθ̃(θ̃)

)
(179)

Again, σ̂2 is a constant and δt(e1, 0) depends linearly on log θt and log θt−1 and δt(ek, θ̃) −
δt(e1, 1) does not depend on log θt for all k ≤ K. Thus, we may write it as δk1(θt−1, θ̃).

Again, a1 is the same as in Proposition 1. By the same steps as in Proposition 13, we then

have that:

f(Q̌, θt−1) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(∫ ∑
k

Q̌t,k|θ̃ exp

{
ε− 1

ε
δk1(θt−1, θ̃)

}
dFθ̃(θ̃)

)
(180)

Completing the proof.

We can use this result to study the additional effects induced by persistent idiosyncratic

fundamentals. To do this, we restrict to the case of our main analysis with optimism and

pessimism. In this context, we have that:

f(Q̌) =
ε
ε−1

1− ω log

(
Eθ̃

[
Q̌t|θ̃ exp

{
ε− 1

ε
δOP (θ̃)

}
+ (1− Q̌t|θ̃) exp

{
ε− 1

ε
δPP (θ̃)

}])
(181)

where:

δOP (θ̃) = αδOP +
1+ψ
α

1+ψ−α
α

+ 1
ε

ρθ̃ log θ̃

δPP (θ̃) =
1+ψ
α

1+ψ−α
α

+ 1
ε

ρθ̃ log θ̃

(182)
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We define ξ =
1+ψ
α

1+ψ−α
α

+ 1
ε

ρθ̃ and observe that we can write:

Q̌t|θ̃ exp

{
ε− 1

ε
δOP (θ̃)

}
+ (1− Q̌t|θ̃) exp

{
ε− 1

ε
δPP (θ̃)

}
= Qt|θ̃ exp

{
ε− 1

ε

(
αδOP + ξ log θ̃

)}
+ (1−Qt|θ̃) exp

{
ε− 1

ε
ξ log θ̃

}
= Qt|θ̃ exp

{
ε− 1

ε
ξ log θ̃

}[
exp

{
ε− 1

ε
αδOP

}
− 1

]
+ exp

{
ε− 1

ε
ξ log θ̃

} (183)

Taking the expectation of the relevant terms, we obtain:

Eθ̃

[
Q̌t|θ̃ exp

{
ε− 1

ε
δOP (θ̃)

}
+ (1− Q̌t|θ̃) exp

{
ε− 1

ε
δPP (θ̃)

}]
=

[
exp

{
ε− 1

ε
αδOP

}
− 1

]
exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

}
Qt

+ Covt

(
Qt|θ̃, θ̃

ε−1
ε
ξ
)

+ exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

} (184)

Thus, we have that the contribution of optimism to output is given by:

f(Q̌t) =
ε
ε−1

1− ω log

([
exp

{
ε− 1

ε
αδOP

}
− 1

]
exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

}
Qt

+ Covt

(
Qt|θ̃, θ̃

ε−1
ε
ξ
)

+ exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

}) (185)

We observe that the first term is almost identical to that in our main analysis. This term

is now intermediated by the effect of heterogeneity in previous productivity (to see this,

observe that this vanishes when ρθ̃ = 0). Second, there is a new effect stemming from the

covariance of optimism and productivity. Intuitively, when more optimistic firms are also

more productive, they increase their production by more and this increases output. Finally,

there is a level effect of heterogeneous productivity.

Thus, the sole new qualitative force is the covariance effect. To the extent that this does

not vary with time, it can have no effect on dynamics. We investigate this in the data by

estimating the regression model

log θ̂it =
2019∑

τ=1995

βτ · (optiτ · I[τ = t]) + χj(i),t + γi + εit (186)
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where (χj(i),t, γi) are industry-by-time and firm fixed effects, and βs measures the (within-

industry, within-firm) difference in mean log TFP for optimistic and pessimistic firms in each

year. If the βs vary systematically with the business cycle, then the shifting productivity

composition of optimists over the business cycle is an important component of business-cycle

dynamics.

We plot our coefficient estimates βτ in Figure A15. The estimates are generally positive,

but economically small relative to the large observed variation in TFP, log θit, which has

an in-sample standard deviation of 0.84. Outside of the first two years and last year of the

sample, we find limited evidence of time variation. Moreover, the variation that exists is

not obviously correlated with the business cycle. This suggests that the compositional effect

for optimists driven by narrative updating in response to idiosyncratic conditions is not, at

least in our data, quantitatively significant.

B.7 Contrarianism, Endogenous Cycles, and Chaos

The baseline model can generate neither endogenous cycles nor chaotic dynamics without

extrinsic shocks to fundamentals (as made formal by Lemma 1). This is because the prob-

ability that agents become optimistic is always increasing in the fraction of optimists in

equilibrium.

In this appendix, we relax this assumption and delineate precise, testable conditions

under which cyclical and chaotic dynamics occur in the absence of fundamental and aggregate

shocks. We do so in a model with “contrarian” agents whose updating contradicts recent

data and/or consensus. Our analysis of endogenous narratives with contrarianism therefore

complements the literature on endogenous cycles in macroeconomic models (see, e.g., Boldrin

and Woodford, 1990; Beaudry, Galizia, and Portier, 2020) by providing a further potential

micro-foundation for the existence of endogenous cycles.

We begin by defining cycles and chaos. There exists a cycle of period k ∈ N if Q =

T k(Q) and all elements of {Q, T (Q), . . . , T k−1(Q)} are non-equal. We will say that there

are chaotic dynamics if there exists an uncountable set of points S ⊂ [0, 1] such that (i)

for every Q,Q′ ∈ S such that Q 6= Q′, we have that lim supt→∞ |T t(Q) − T t(Q′)| > 0 and

lim inft→∞ |T t(Q) − T t(Q′)| = 0 and (ii) for every Q ∈ S and periodic point Q′ ∈ [0, 1],

lim supt→∞ |T t(Q) − T t(Q′)| > 0. This definition of chaos is due to Li and Yorke (1975)

and can be understood as saying that there is a large set of points such that the iterated

dynamics starting from any two points in this set get both far apart and vanishingly close.
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A Variant Model with the Potential for Cycles and Chaos. We will study the issue

of cycles and chaos under the simplifying assumption that,39 in equilibrium, the induced

probabilities that optimists and pessimists respectively become optimists are quadratic and

given by:40

P̃O(Q) = aO + bOQ− cQ2 , P̃P (Q) = aP + bPQ− cQ2 (187)

with parameters (aO, aP , bO, bP , c) ∈ R5 such that PO([0, 1]), PP ([0, 1]) ⊆ [0, 1]. The parame-

ters aO and aP index stubbornness, bO and bP capture both contagiousness and associative-

ness (through the subsumed equilibrium map), and c captures any non-linearity.

The following result describes the potential dynamics:

Proposition 15. The following statements are true:

1. When P̃O ≥ P̃P and both are monotone, there are neither cycles of any period nor

chaotic dynamics.

2. When P̃O and P̃P are linear, cycles of period 2 are possible, cycles of any period k > 2

are not possible, and chaotic dynamics are not possible.

3. Without further restrictions on P̃O and P̃P , cycles of any period k ∈ N and chaotic

dynamics are possible.

Proof. The dynamics of optimism are characterized by the transition map

T (Q) = Q(aO + bOQ− cQ2) + (1−Q)(aP + bPQ− cQ2)

= aP + (aO − aP + bP )Q− (c+ bP − bO)Q2
(188)

where we define ω0 = aP , ω1 = (aO − aP + bP ), ω2 = (c + bP − bO) for simplicity. We first

show that the dynamics described by T are topologically conjugate to those of the logistic

map Ť (x) = ηx(1− x) with

η = 1 +
√

(aO − aP + bP − 1)2 + 4aP (c+ bP − bO) (189)

Two maps T : [0, 1] → [0, 1] and T ′ : [0, 1] → [0, 1] are topologically conjugate if there

exists a continuous, invertible function h : [0, 1] → [0, 1] such that T ′ ◦ h = h ◦ T . If T is

39This simplifying assumption is without any qualitative loss as this model can demonstrate the full range
of potential cyclical and chaotic dynamics.

40This can be microfounded in a generalization our earlier LAC model by taking Pi(log Y,Q) = ui +

ri log Y + siQ− cQ2 for i ∈ {O,P} and approximating f(Q) ≈ αδOP

1−ω Q. In this case:

P̃i(Q) = (ui + ria0 + ria1 log θ) +

(
ri
αδOP

1− ω + si

)
Q− cQ2
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topologically conjugate to T ′ and we know the orbit of T ′, we can compute the orbit of T

via the formula:

T k(Q) =
(
h−1 ◦ T ′k ◦ h

)
(Q) (190)

Hence, we can prove the properties of interest using known properties of the map Ť as well

as the mapping from the deeper parameters of T to the parameters of Ť .

To show the topological conjugacy of T and Ť , we proceed in three steps:

1. T is topically topologically conjugate to the quadratic map T̂ (Q) = Q2 + k for appro-

priate choice of k. We guess the following homeomorphism ĥ(Q) = α̂+ β̂Q. Plugging

ĥ in T̂ , we have that:

T̂ (ĥ(Q)) = (k + α̂2) + 2α̂β̂Q+ β̂2Q2 (191)

Inverting ĥ and applying it to this expression yields:

ĥ−1(T̂ (ĥ(Q))) =
k + α̂(α̂− 1)

β̂
+ 2α̂Q+ β̂Q2 (192)

To verify topological conjugacy, we need to show that T (Q) = ĥ−1(T̂ (ĥ(Q))). Matching

coefficients, this is the case if and only if:

ω0 =
k + α̂(α̂− 1)

β̂
, ω1 = 2α̂, ω2 = −β̂ (193)

We therefore have that:

k = β̂ω0 + α̂(1− α̂) = −ω2ω0 +
ω1

2

(
1− ω1

2

)
(194)

with ĥ(Q) = ω1

2
− ω2Q.

2. T̂ is topologically conjugate to Ť for appropriate choice of η. We guess the following

homeomorphism ȟ(Q) = α̌ + β̌Q. Plugging ȟ in Ť , we obtain:

Ť (ȟ(Q)) = η
(
α̌(1− α̌) + β̌(1− 2α̌)Q− β̌2Q2

)
(195)

Inverting ȟ and applying it, we obtain:

ȟ−1(Ť (ȟ(Q))) =
ηα̌(1− α̌)− α̌

β̌
+ η(1− 2α̌)Q− ηβ̌Q2 (196)
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Matching coefficients, we find:

k =
ηα̌(1− α̌)− α̌

β̌
, 0 = η(1− 2α̌), 1 = −ηβ̌ (197)

We therefore obtain that:

k = η(α̌− η(1− α̌)) =
η

2

(
1− η

2

)
(198)

which implies that η = 1 +
√

1− 4k with ȟ(Q) = 1
2
− 1

1+
√

1−4k
Q.

3. T is topologically conjugate to Ť for appropriate choice of η. We now compose the

mappings proved in steps 1 and 2 to show

T = ĥ−1 ◦ ȟ−1 ◦ Ť ◦ ȟ ◦ ĥ (199)

with

η = 1 +

√
1− 4

(
−ω2ω0 +

ω1

2

(
1− ω1

2

))
= 1 +

√
(ω1 − 1)2 + 4ω2ω0

= 1 +
√

(aO − aP + bP − 1)2 + 4aP (c+ bP − bO)

(200)

and therefore that T is topologically conjugate to Ť .

Having shown the conjugacy of T to Ť , we now find bounds on η implied by each case

and use this conjugacy to derive the implications for possible dynamics. The following points

prove each claim 1-3 in the original Proposition.

1. P̃O ≥ P̃P and both are monotone. Thus, T is increasing and there cannot be cycles or

chaos. This implies that η < 3 (see Weisstein, 2001, for reference).

2. P̃O and P̃P are linear. It suffices to show that we can attain η > 3 but that η must

be less than 1 +
√

6 (see Weisstein, 2001, for reference). In this case, c = 0. This is

in addition to the requirements that maxQ∈[0,1] P̃i(Q) ≤ 1 and minQ∈[0,1] P̃i(Q) ≥ 0 for

i ∈ {O,P}, which can be expressed as:

max
Q∈[0,1]

P̃i(Q) = max

{
ai, ai + bi − c,

(
ai +

b2
i

4c

)
I[0 ≤ bi ≤ 2c]

}
≤ 1

min
Q∈[0,1]

P̃i(Q) = min{ai, ai + bi − c} ≥ 0
(201)

The maximal value of η consistent with these restrictions can therefore be obtained by
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solving the following program:

max
(aO,aP ,bO,bP )∈R4

(aO − aP + bP − 1)2 + 4aP (bP − bO)

s.t. max {aO, aO + bO} ≤ 1,max {aP , aP + bP} ≤ 1

min{aO, aO + bO} ≥ 0,min{aP , aP + bP} ≥ 0

(202)

Exact solution of this program via Mathematica yields that the maximum value is 5.

This implies that the maximum value of η is 1 +
√

5 ≈ 3.23, which is greater than 3

but less than 1 +
√

6. Moreover, this maximum is attained at aO = 0, aP = 1, bO =

0, bP = −1.

3. No further restrictions on P̃O and P̃P . We can attain η = 4 by setting a0 = aP = 0,

bO = bP = 4, c = 4. Thus, cycles of any period k ∈ N and chaotic dynamics can occur

(see Weisstein, 2001, for reference).

The proof of this result follows a classic approach of recasting a quadratic difference

equation as a logistic difference equation via topological conjugacy (see, e.g., Battaglini,

2021; Deng, Khan, and Mitra, 2022). The restrictions on structural parameters implied by

the hypotheses of the proposition then yield upper bounds on the possible logistic maps and

allow us to characterize the possible dynamics using known results.

To understand this result, observe in our baseline case in which T is monotone that

cycles and chaos are not possible. This is because there is no potential for optimism to

sufficiently overshoot its steady state. By contrast, when P̃O and P̃P are either non-monotone

or non-ranked, two-period cycles can take place where the economy undergoes endogenous

boom-bust cycles with periods of high optimism and high output ushering in periods of low

optimism and low output (and vice versa) as contrarians switch positions and consistently

overshoot the (unstable) steady state. Finally, when P̃O and P̃P are non-linear and non-

monotone, essentially any richness of dynamics can be achieved via erratic movements in

optimism that are extremely sensitive to initial conditions.

An Empirical Test for Cycles and Chaos. Proposition 15 shows how to translate an

updating rule of the form of Equation 187 into predictions about the potential for cycles and

chaos. We now estimate this updating rule in the data to test these predictions empirically.

Concretely, in our panel dataset of firms, we estimate the regression model

optit = α1 opti,t−1 + β1opti,t−1 · opti,t−1+

β2(1− opti,t−1) · opti,t−1 + τ (opti,t−1)2 + γi + εit
(203)
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where γi is a firm fixed effect. This model allows the effects of contagiousness to depend on

agents’ previous state. In the mapping to Equation 187, α = aP , α1 = aO − aP , β1 = bO,

β2 = bP , and τ = c. With estimates of each regression parameter, denoted by a hat, we also

obtain an estimate of the logistic map parameter η defined in Equation 189:

η̂ = 1 +

√
(α̂1 + β̂2 − 1)2 + 4α̂1(τ̂ + β̂2 − β̂1) (204)

Since η̂ is a nonlinear function of estimated parameters in the regression, we can conduct

inference on η̂ using the delta method. Moreover, this constitutes a test for the possibility

of cycles and chaos in the model by the logic of Proposition 15. Specifically, as described in

the proof of that result, there are two main cases. First, if η < 3, then case 1 of the result

obtains: there are neither cycles of any period nor chaotic dynamics. Second, if η ≥ 3, there

can be cycles of period 2 or more and/or chaos. Moreover, if η > 3.57, chaotic dynamic

obtain.

Our estimates are presented in Table A20. Our point estimate of η is 1.443 and the 95%

confidence interval is (0.076, 2.810). This rules out, at the 5% level, the presence of cycles

and/or chaos. The 99% confidence interval is (−0.354, 3.240), which does not rule out cycles.

The p-value for the chaotic dynamics threshold is 0.001. Thus, our results provide strong

evidence against the possibility of chaos due to contagious optimism, and marginally weaker

evidence against the possibility of cycles. This test complements the literature on endogenous

cycles in macroeconomic models (see, e.g., Boldrin and Woodford, 1990; Beaudry, Galizia,

and Portier, 2020) by providing a micro-founded test within a structural economic model,

which may ameliorate challenges associated with interpreting pure time-series evidence (see,

e.g., Werning, 2017).

B.8 Narratives in Games and the Role of Higher-Order Beliefs

We have studied a micro-founded business-cycle model, but the basic insights extend much

more generally to abstract, linear beauty contest games. Importantly, these settings provide

us with an ability to disentangle the dual roles of narratives in affecting both agents’ first-

order and higher-order beliefs about fundamentals.

Concretely, suppose that agents’ best replies are given by the following beauty contest

form (see, e.g., Morris and Shin, 2002):

xit = αEit[θt] + βEit[Yt] (205)

where α > 0 and β ∈ [0, 1). This linear form for best replies is commonly justified by (log-
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)linearization of some underlying best response function (see, e.g., Angeletos and Pavan,

2007). For example, log-linearization of the agents’ best replies in the baseline model of this

section yields such an equation with β = ω and all variables above standing in for their

log-counterparts. Moreover, suppose that aggregation is linear so that Yt =
∫

[0,1]
xitdi. This

can similarly be justified via an appropriate first-order expansion of non-linear aggregators.

Finally, we let the structure of narratives be as before.

Toward characterizing equilibrium, we define the average expectations operator:

Et[θt] =

∫
[0,1]

Eit [θt] di (206)

and the higher-order average expectations operator for k ∈ N as:

Ekt [θt] =

∫
[0,1]

Eit
[
Ek−1

t [θt]
]

di (207)

Moreover, we observe by recursive substitution that equilibrium aggregate output is given

by:

Yt = α
∞∑
k=1

βk−1Et
k
[θt] (208)

We can therefore solve for the unique equilibrium by computing the hierarchy of higher-

order expectations. We can do this in closed-form by observing that agents’ idiosyncratic

first-order beliefs are given by:

Et[θt|sit, λit] = κsit + (1− κ) (λitµO + (1− λit)µP ) (209)

which allows us to compute average first-order expectations of fundamentals as:

Et[θt] = κθt + (1− κ)(QtµO + (1−Qt)µP ) (210)

which is a weighted average between true fundamentals and the average impact of narratives

on agents’ priors. By taking agents’ expectations over this object and averaging, we compute

higher-order average expectations as:

Ekt [θt] = κkθt + (1− κk)(QtµO + (1−Qt)µP ) (211)

which is again a weighted average between the state and agents’ priors, but now with a

geometrically increasing weight on narratives as we consider higher-order average beliefs.

The following result characterizes aggregate output and agents’ best replies in the unique
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equilibrium:

Proposition 16 (Narratives and Higher-Order Beliefs). There exists a unique equilibrium.

In this unique equilibrium, aggregate output is given by:

Yt =
α

1− β

(
(1− β)κ

1− βκ θt +
1− κ

1− βκ (QtµO + (1−Qt)µP )

)
(212)

Moreover, agents’ actions follow:

xit = α
1

1− βκ [κθt + κeit + (1− κ) (λitµO + (1− λit)µP )]

+ β
α

1− β
1− κ

1− βκ (QtµO + (1−Qt)µP )
(213)

Proof. To substantiate the arguments in the main text, by aggregating Equation 205, we

obtain that:

Yt = αEt[θt] + βEt[Yt] (214)

Thus, by recursive substitution k times we obtain that:

Yt = α
k∑
j=1

βj−1E
j

t [θt] + βkE
k

t [Yt] (215)

Moreover, we have that:

Ejt [θt] = κjθt + (1− κj)(QtµO + (1−Qt)µP ) (216)

and thus that:

α
k∑
j=1

βj−1E
j

t [θt] = α
k∑
j=1

βj−1
(
κjθt + (1− κj)(QtµO + (1−Qt)µP )

)
= α

k∑
j=1

βj−1(QtµO + (1−Qt)µP ) + αβ−1

k∑
j=1

(βκ)j [θt − (QtµO + (1−Qt)µP )]

(217)

Hence:

lim
k→∞

α
k∑
j=1

βj−1E
j

t [θt] =
α

1− β (QtµO + (1−Qt)µP )+

ακ

1− βκ [θt − (QtµO + (1−Qt)µP )]

(218)
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We therefore have that there is a unique equilibrium if limk→∞ β
kE

k

t [Yt] = 0. Hellwig and

Veldkamp (2009) show in Proposition 1 of their supplementary material that all equilibria

differ on a most a measure zero set of fundamentals. In this setting, this implies that

limk→∞ β
kE

k

t [Yt] = c for some c ∈ R for almost all θ ∈ Θ. Hence, the equilibrium is given

by:

Yt =
α

1− β (QtµO + (1−Qt)µP ) +
ακ

1− βκ [θt − (QtµO + (1−Qt)µP )] + c

=
α

1− β

(
(1− β)κ

1− βκ θt +
1− κ

1− βκ (QtµO + (1−Qt)µP )

)
+ c

(219)

But then we have that c = 0 by computing limk→∞ β
kE

k

t [Yt] = 0 under this equilibrium.

Finally, to solve for individual actions under this equilibrium, we compute:

xit = αEit[θt] + βEit[Yt]

= αEit[θt] + βEit
[

α

1− β

(
(1− β)κ

1− βκ θt +
1− κ

1− βκ (QtµO + (1−Qt)µP )

)]
=

(
α + β

α

1− β
(1− β)κ

1− βκ

)
Eit[θt] + β

α

1− β
1− κ

1− βκ (QtµO + (1−Qt)µP )

= α
1

1− βκ (κsit + (1− κ) (λitµO + (1− λit)µP ))

+ β
α

1− β
1− κ

1− βκ (QtµO + (1−Qt)µP )

(220)

Completing the proof.

This result allows us to see how narratives affect output by propagating up through the

hierarchy of higher-order beliefs. Concretely, we have that the static impulse response of

output to a contemporaneous shock to the fraction of optimists in the population is given

by:
∂Yt
∂Qt

=
α

1− β
1− κ

1− βκ(µO − µP ) = α

∞∑
j=1

βj−1(1− κj)(µO − µP ) (221)

The first expression is composed of the relative importance of fundamentals α
1−β , the impact

of prior beliefs on the entire hierarchy of higher-order beliefs about exogenous and endogenous

outcomes 1−κ
1−βκ and the difference between the two narratives µO−µP . The second expression

re-expands the heirarchy of beliefs, to highlight how fraction

βj−1(1− κj)
1

1−β
1−κ

1−βκ
(222)
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of the total effect is driven by beliefs of order j. These weights decline more slowly if

complementarity β or prior weights 1− κ are high.

Finally, our result shows how the regression equation relating individual actions with

narrative weights, estimated in our main analysis, holds in equilibrium in the linearized

beauty contest. Thus, our empirical strategy is compatible with the interpretation that the

macroeconomy is best described by a linear beauty contest, and moreover can be ported to

other settings where this modeling assumption may be appropriate, such as that of financial

speculation (see e.g., Allen, Morris, and Shin, 2006).

B.9 Model with Firm Dynamics

We now sketch an augmentation of our baseline conceptual model of the firm from which we

derived our earlier estimating equations (see Appendix A.1) to allow for persistent idiosyn-

cratic states and adjustment costs. This allows us to more formally justify why controlling

for firm productivity and lagged labor is sufficient to account for the presence of adjustment

costs to first-order.

In every period t, each firm i still takes an action xit ∈ X . Their objective function

still takes as an input their action, aggregate outcomes Yt ∈ Y , and aggregate fundamentals

θt (which in analogy to the previous appendix sections, we allow to follow a first-order

(continuous) Markov process). However, they now have idiosyncratic fundamentals θ̃it, which

follow a first-order (continuous) Markov process. Moreover, their actions are subject to

adjustment costs Φ : R → R+ equal to Φ(x − x−1) when their last action was x−1. Thus,

we let their flow utility be u(x, Y, θ, θ̃) − Φ(x − x−1). The firm discounts the future at

rate βi ∈ [0, 1). The aggregate state variables in period t are the distribution of xit−1 in

the population F x
t−1, the distribution of narratives in the population Qt, and the level of

current and past aggregate fundamentals θt and θt−1. Thus, equilibrium aggregate output

is described by some function Ŷ (F x
t−1, Qt, θt, θt−1). Moreover, observe at time t that the

following are the state variables for a firm: (i) the level of idiosyncratic productivity in the

previous period θ̃it−1 (ii) the level of aggregate productivity in the previous period θt−1 (iii)

the firm’s action in the previous period xit−1 (iv) the narrative entertained by the agent

λit (v) their current signal about fundamentals sit, and (vi) the additional aggregate states

(F x
t−1, Qt).

We can therefore represent any firm policy function as:

xit = g(xit−1, θt−1, θ̃it−1, F
x
t−1, Qt, λit, sit) (223)
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If this is differentiable, we may linearize it to obtain:

xit ≈ γi + χt +
K∑
k=1

δkλk,it + γθit−1 + ωxit−1 + εit (224)

where the aggregate fixed effect now absorbs (F x
t−1, Qt, θt, θt−1), θit−1 capture agents’ idiosyn-

cratic expectations of future fundamentals, and xit−1 captures their adjustment costs.
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C Additional Details on Textual Data

C.1 Obtaining and Processing 10-Ks

Here, we describe our methodology for obtaining and processing raw data on 10-K filings.

We start with raw html files downloaded directly from the SEC’s EDGAR (Electronic Data

Gathering, Analysis, and Retrieval) system. Each of these files corresponds to a single 10-K

filing. Each file is identified by its unique accession number. In its heading, each file also

contains the end-date for the period the report concerns (e.g., 12/31/2018 for a FY 2018

ending in December), and a CIK (Central Index Key) firm identifier from the SEC. We use

standard linking software provided by Wharton Research Data Services (WRDS) to link CIK

numbers and fiscal years to the alternative firm identifiers used in data on firm fundamentals

and stock prices. We have, in our original dataset, 182,259 files.

We follow the following steps to turn each document, now identified by firm and year,

into a bag-of-words representation:

1. Cleaning raw text. We first translate the document into unformatted text. Specifically,

we follow the following steps in order:

(a) Removing hyperlinks and other web addresses

(b) Removing html formatting tags encased in the brackets <>

(c) Making all text lowercase

(d) Removing extra spaces, tabs, and new lines.

(e) Removing punctuation

(f) Removing non-alphabetical characters

2. Removing stop words. Following standard practice, we remove “stop words” which are

common in English but do not convey specific meaning in our analysis. We use the

default English stop word list in the nltk Python package. Example stopwords include

articles (“a”,“the”), pronouns (“I”,“my”), prepositions (“in”,“on”), and conjunctions

(“and”,“while”).

3. Lemmatizing documents. Again following standard practice, we use lemmatization

software to reduce words to their common roots. We use the default English-language

lemmatizer of the spacy Python package. The lemmatizer uses both the word’s iden-

tity and its content to transform sentences. For instance, when each is used as a verb,

“meet,” “met,” and “meeting” are commonly lemmatized to “meet.” But if the soft-

ware predicts that “meeting” is used as a noun, it will be lemmatized as the noun

“meeting.”
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4. Estimating a bigram model. We estimate a bigram model to group together commonly

co-occurring words as single two-word phrases. We use the phrases function of the

gensim package. The bigram modeler groups together words that are almost always

used together. For instance, if our original text data set were the 10-Ks of public firms

Nestlé and General Mills, the model may determine that “ice” and “cream,” which

almost always appear together, are part of a bigram “ice cream.”

5. Computing the bag of words representation. Having now expressed each document as

a vector of clean words (i.e., single words and bigrams), we simply collapse these data

to frequencies.

Finally, note that our procedure uses all of the non-formatting text in the 10K. This

includes all sections of the documents, and does not limit to the Management Discussion

and Analysis (MD&A) section. This is motivated by the fact that management’s discussion

is not limited to one section SEC (2011). Moreover, prior literature has found that textual

analysis of the entire 10-K versus the MD&A section tends to closely agree, and that limiting

scope to the MD&A section has limited practical benefits due to the trade-off of limiting the

amount of text per document (Loughran and McDonald, 2011).

C.2 Obtaining and Processing Conference Call Text

We obtain the full text of sales and earnings conference calls from 2002 to 2014 from the Fair

Disclosure (FD) Wire service. The original sample includes 261,034 documents, formatted

as raw text. We next subset to documents that have reported firm names and stock tickers,

which are automatically associated with documents by Lexis Nexis. When matches are

probabilistic, we use the first (highest probability) match.41 We finally restrict to firms that

are listed on one of three US stock exchanges: the NYSE, the NASDAQ, or the NYSE-

MKT (Small Cap). We finally connect tickers to the firm identifiers in our fundamentals

data using the master cross-walk available on Wharton Research Data Services (WRDS).

These operations together reduce the sample size to 158,810 calls. We clean these data by

conducting steps 1-3 described above in Appendix C.1. We then calculate positive word

counts, negative word counts, and optimism exactly as described in the main text for the

10-K data.

C.3 Measuring Positive and Negative Words

To calculate sets of positive and negative 10K words, we use the updated dictionary available

online at McDonald (2021) as of June 2020. This dictionary includes substantial updates

41In the essentially zero-measure cases in which there is a tie, we take the alphabetically first ticker.
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relative to the dictionaries associated with the original Loughran and McDonald (2011)

publication. These changes are reviewed in the Documentation available at McDonald (2021).

The Loughran-McDonald dictionary includes 2345 negative words and 347 positive words.

The dictionary is constructed to include multiple forms of each relevant word. For instance,

the first negative root “abandon” is listed as: “abandon,” “abandoned,” “abandoning,”

“abandonment,” “abandonments,” and “abandons.” To ensure consistency with our own

lemmatization procedure, we first map each unique word to all of its possible lemmas using

the getAllLemmas function of the lemminflect Python package, which is an extension to the

spacy package we use for lemmatization. We then construct a new list of negative words by

combining the original list of negative words with all new, unique lemmas to which a negative

word mapped (and similarly for positive words). This procedure results in new lists of 2411

negative words and 366 positive words, which map exactly to the words that appear in our

cleaned bag of words representation. We list the top ten most common positive and negative

words from this cleaned set in Table A1. In particular, to make the table most legible, we

first associate words with their lemmas, then count the sum of document frequencies for each

associated word (which may exceed one), and then print the most common word associated

with the lemma.

109



D Additional Details on Firm Fundamentals Data

D.1 Compustat: Data Selection

Our data selection criteria and variable definitions are identical to those used in Flynn and

Sastry (2022). In this Appendix, we review essential points. We refer the reader to the

Appendix material of Flynn and Sastry (2022) for certain details.

Our dataset is Compustat Annual Fundamentals. Our main variables of interest are de-

fined in Appendix Table A21. We restrict the sample to firms based in the United States,

reporting statistics in US Dollars, and present in the “Industrial” dataset. We exclude firms

whose 2-digit NAICS is 52 (Finance and Insurance) or 22 (Utilities). This filter eliminates

firms in two industries that, respectively, may have highly non-standard production technol-

ogy and non-standard market structure.

We summarize our definitions of major “input and output” variables in Appendix Table

A21. For labor choice, we measure the number of employees. For materials expenditure,

we measure the sum of reported variable costs (cogs) and sales and administrative expense

(xsga) net of depreciation (dp).42 As in Ottonello and Winberry (2020) and Flynn and

Sastry (2022), we use a perpetual inventory method to calculate the value of the capital

stock. We start with the first reported observation of gross value of plant, property, and

equipment and add net investment or the differences in net value of plant, property, and

equipment. Note that, because all subsequent analysis is conditional on industry-by-time

fixed effects, it is redundant at this stage to deflate materials and capital expenditures by

industry-specific deflators.

We categorize the data into 44 sectors. These are defined at the 2-digit NAICS level,

but for the Manufacturing (31-33) and Information (51) sectors, which we classify at the

3-digit level to achieve a better balance of sector size. More summary information about

these industries is provided in Appendix F of Flynn and Sastry (2022).

D.2 Compustat: Calculation of TFP

When calculating firms’ Total Factor Productivity, we restrict attention to a subset of our

sample that fulfils the following inclusion criteria:

1. Sales, material expenditures, and capital stock are strictly positive;

2. Employees exceed 10;

42A small difference from Flynn and Sastry (2022) is that, in assessing the firms’ costs and later calculating
TFP, we do not “unbundle” materials expenditures on labor and non-labor inputs using supplemental data
on annual wages.
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3. Acquisitions as a proportion of assets (aqc over at) does not exceed 0.05.

The first ensures that all companies meaningfully report all variables of interest for our

production function estimation; the second applies a stricter cut-off to eliminate firms that

are very small, and lead to outlier estimates of productivity and choices. The third is a simple

screening device for large acquisitions which may spuriously show up as large innovations in

firm choices and/or productivity.

Our method for recovering total factor productivity is based on cost shares. In brief,

we use cost shares for materials and labor to back out production elasticities, and treat

the elasticity of capital as the implied “residual” given an assumed mark-up µ > 1 (in

our baseline, µ = 4/3) and constant physical returns-to-scale. The exact procedure is the

following:

1. For all firms in industry j, calculate the estimated materials share:

ShareM,j′ =

∑
i:j(i)=j′

∑
t MaterialExpenditureit∑

i:j(i)=j′
∑

t Salesit
(225)

2. If ShareM,j′ ≤ µ−1, then set

αM,j′ = µ · ShareM,j′

αK,j′ = 1− αM,j′ − αL,j′
(226)

3. Otherwise, adjust shares to match the assumed returns-to-scale, or set

αM,j′ = 1

αK,j′ = 0
(227)

To translate our production function estimates into productivity, we calculate a “Sales

Solow Residual” θ̃it of the following form:

log θ̃it = log Salesit −
1

µ

(
αM,j(i) · log MatExpit + αK,j(i) · log CapStockit

)
(228)

We finally define our estimate log θ̂ as the previous net of industry-by-time fixed effects

log θ̂it = log θ̃it − χj(i),t (229)

Theoretical Interpretation. The aforementioned method recovers physical productivity

(“TFPQ”) under the assumptions, consistent with our quantitative model, that firms operate
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constant returns-to-scale technology and face an isoleastic, downward-sloping demand curve

of known elasticity (equivalently, they charge a known markup). The idea is that, given

the known markup, we can impute firms’ (model-consistent) costs as a fixed fraction of

sales and then calculate the theoretically desired cost shares. Here, we describe the simple

mathematics.

There is a single firm i operating in industry j with technology

Yi = θiM
αj
i K

1−αj
i (230)

They act as a monopolist facing the demand curve

pi = Y
− 1
ε

i (231)

for some inverse elasticity ε > 1. Observe that this is, up to scale, the demand function

faced by monopolistically competitive intermediate goods producers in our model. The

firm’s revenue is therefore piYi = Y
1− 1

ε
i . Finally, the firm can buy materials at industry-

specific price qj and rent capital at rate rj. The firm’s program for profit maximization is

therefore

max
Mi,Ki

{
(θiM

αj
i K

1−αj
i )1− 1

ε − qjMi − rjKi

}
(232)

We first justify our formulas for the input shares (Equation 226). To do this, we solve for

the firm’s optimal input choices. This is a concave problem, in which first-order conditions

are necessary and sufficient. These conditions are

qj = M−1
i αj

(
1− 1

ε

)
(θiM

αj
i K

1−αj
i )1− 1

ε

rj = K−1
i (1− αj)

(
1− 1

ε

)
(θiM

αj
i K

1−αj
i )1− 1

ε

(233)

Re-arranging, and substituting in pi = Y
− 1
ε

i , we derive

αj =
ε

ε− 1

qjMi

piYi

1− αj =
ε

ε− 1

rjKi

piYi

(234)

Or, in words, that the materials elasticity is ε
ε−1

times the ratio of materials input expen-

ditures to sales. Observe also that, by re-arranging the two first-order conditions, we can
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write expressions for production and the price

Y =

((
ε− 1

ε

)
θi

(
αj
qj

)α(
1− αj
rj

)1−αj
)ε

⇒ p =

(
ε

ε− 1

)
θ−1
i

(
qj
αj

)αj ( rj
1− αj

)1−αj

(235)

and observe that θ−1
i

(
qj
αj

)αj ( rj
1−αj

)1−αj
is the firm’s marginal cost. Hence, we can define

µ = ε
ε−1

> 1 as the firm’s markup and write the shares as required:

α = µ
qjMi

piYi
(236)

Finally, we now apply Equations 228 and 229 to calculate productivity. Assume that we

observe materials expenditure qjMi and capital value pK,jKi, where pK,j is an (unobserved)

price of capital. We find

log θ̃i =

(
1− 1

ε

)
(log θi − α log qj − (1− α) log pK,j) (237)

We finally observe that the industry-level means are

χj =

(
1− 1

ε

)(
log θ̄j − α log qj − (1− α) log pK,j

)
(238)

where log θ̄j is the mean of log θi over the industry. Hence,

log θ̂i =

(
1− 1

ε

)
(log θi) (239)

or our measurement captures physical TFP, up to scale.
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E Additional Empirical Results

E.1 A Test for Coefficient Stability

Here, we study the bias that may arise from omitted variables in our estimation of the

effect of narrative optimism on hiring, or δOP in Section 4.1, Equation 12, and Table 1.

In particular, we apply the method of Oster (2019) to bound bias in the estimate of δOP

under external assumptions about selection on unobservable variables and to calculate an

extent of unobservable selection that could be consistent with a point estimate δOP = 0 that

corresponds to our null hypothesis (i.e., “narrative optimism is irrelevant for hiring”). We

find that our results are highly robust by this criterion.

Set-up and Review of Methods. To review, our estimating equation is

∆ logLit = δOPoptit + γi + χj(i),t + τ ′Xit + εit (240)

Hiring and optimism are constructed as described in Section 3, at the level of firms and

fiscal years. We treat firm and industry-by-time fixed effects as baseline controls that are

necessary for interpreting the regression.43 As our main “discretionary” controls, we con-

sider current and past TFP and lagged labor—that is, Xit = {log θ̂it, log θ̂i,t−1, logLi,t−1}.
Under our baseline model, these controls help increase precision, as they are in principle

observable variables that explain hiring (Corollary 1). Thus, in this Appendix, we will study

the regression model in which the fixed effects are partialed out of both the outcome, main

regression, and controls, as indicated below with the ⊥ superscript:

∆ logL⊥it = δOPopt⊥it + τ ′X⊥it + ε⊥it (241)

The essence of the method proposed by Oster (2019), who builds on the approach of

Altonji, Elder, and Taber (2005), is to extrapolate the change in the coefficient in interest

upon the addition of control variables, taking into account the better fit (i.e., additional

R2) from adding the new regressors. To exemplify the logic, consider a case in which we

first estimated Equation 241 without controls, obtaining a coefficient estimate of δ̂OPNC and

an R2 of R̂2
NC , and then estimated the same equation with controls, obtaining a coefficient

estimate of δ̂OPC and an R2 of R̂2
C . Both estimates are restricted to a common sample, for

comparability. If R̂2
C = 1, then (up to estimation error) we might presume that δ̂OPC − δ̂OPNC

estimates the entirety of the theoretically possible omitted variables bias, as there is no

43The latter, in particular, controls for the effect of fundamentals on hiring in our macroeconomic model.
We leverage this interpretation of the biased estimate of δOP from a regression lacking this fixed effect in
Appendix F.3.
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remaining unmodeled variation in hiring. If R̂2
C < 1 and R̂2

C − R̂2
NC is small (i.e., the

controls did not greatly improve fit), then we might presume that the residual still contains

unobserved variables that could contribute toward more bias—in other words, the observed

omitted variables bias δ̂OPC − δ̂OPNC is only a small fraction of what is possible.

To formalize this idea, Oster (2019) introduces two auxiliary parameters: λ (the propor-

tional degree of selection, called δ in the original paper), which controls the relative effect of

observed and unobserved controls on the outcome, and R̄2, which is the maximum achiev-

able fit of the regression with all (possibly bias-inducing) controls, presumed in the example

above to be 1. Conditional on R̄2, Oster (2019) proposes an intuitively reasonable (and, in

special cases and under specific asymptotic arguments, consistent) estimator for the degree

of selection required to induce a zero coefficient, λ̂∗. Conditional on both R̄2 and λ, Oster

(2019) also proposes a bias-corrected coefficient estimator, which is δ̂∗OP in our language.

The key parameter that the researcher has to specify for the first calculation is R̄2: the

proportion of variance in the outcome variable (hiring, net of firm and sector-by-time fixed

effects) that can be explained by factors that correlate with the variable of interest (optimism)

and explain the outcome variable. As the main source of omitted variation that could

influence optimism and hiring is news about fundamentals, we benchmark ˆ̄R2 by estimating

a regression in which we include our base control set Xit = {log θ̂it, log θ̂i,t−1, logLi,t−1} and

control for two years of future fundamentals and labor choice, or

Zit = {log θ̂i,t+1, log θ̂i,t+2, logLi,t+1, logLi,t+2}

This yields ˆ̄R2 = 0.459. Oster (2019) also suggests as a benchmark that R̄2 could be taken

as three times the R2 in the controlled regression. We also report robustness to R̄2
Π = 0.387,

three times the value of R2 = 0.129 that we find in the controlled regression. Thus, our

baseline value of ˆ̄R2 = 0.459 is more demanding than that suggested by Oster (2019).

We finally construct the bias-corrected coefficients assuming λ = 1, or equal selection on

unobservables and observables, for both values of R̄2.

Results. We report the results of this exercise in Table A6. Under our baseline value of
ˆ̄R2 = 0.459, we find that the degree of selection required to induced a zero coefficient is

λ̂∗ = 1.69. This is well above the value of λ̂∗ = 1 that Oster (2019) suggests is likely to be

conservative. Under the “three times R2” benchmark, we obtain that λ̂∗ = 2.15. In both

cases, we are robust to there being more selection on unobservables than on observables.

According to Oster (2019), approximately 50% of the published top-journal articles in their

sample are not robust to this extent of selection.
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E.2 Alternative Empirical Strategy: CEO Change Event Studies

To further isolate variation in the narratives held by firms that is unrelated to fundamen-

tals, we study the effects on hiring of changes in narratives induced by plausibly exogenous

managerial turnover.

Data. To obtain plausibly exogenous variation in narratives held at the firm level, we will

examine the year-to-year change in firm-level narratives stemming from plausibly exogenous

CEO changes. To do this, we use the dataset of categorized CEO exits compiled by Gentry,

Harrison, Quigley, and Boivie (2021). These data comprise 9,390 CEO turnover events

categorized by the reason for the CEO exit. The categorization was performed using primary

sources (e.g., press releases, newspaper articles, and regulatory filings) by undergraduate

students in a computer lab, supervised by graduate students, with the final dataset checked

by both a data outsourcing company and an additional student. We restrict attention to

CEO exists caused by death, illness, personal issues, and voluntary retirements. Importantly,

we exclude all CEO exits caused by inadequate job performance, quits, and forced retirement.

The Effect of Optimism on Hiring. We first revisit our empirical strategy for measuring

the effect of optimism on firms’ hiring, using the CEO change event studies. For all firms i

and years t such that i’s CEO leaves because of death, illness, personal issues or voluntary

retirements, we estimate the regression equation

∆ logLit = δCEOoptit + ψ opti,t−1 + τ ′Xit + χj(i),t + εit (242)

This differs from our baseline Equation 12 by including parametric controls for lagged values

of the narrative loadings, but removing a persistent firm fixed effect.44 If the studied CEO

changes are truly exogenous, as we have suggested, then the narrative loadings of the new

CEO are, conditional on the narrative loadings of the previous CEO, solely due to the

differences in worldview across these two senior executives. Of course, CEO exits may be

disruptive and reduce firm activity. Any time- and industry-varying effects of CEO exits

via disruption are controlled for by the intercept of the regression χj(i),t, since the equation

is estimated only on the exit events. Moreover, any within-industry, time-varying, and

idiosyncratic disruption is captured through our maintained productivity control. Under

this interpretation, the coefficient of interest δCEO isolates the effect of optimism on hiring

purely via the channel of changing managements’ narratives.

We present our results in Table A22. We obtain estimates of δCEO that are quantitatively

44With a firm fixed effect, the regression coefficients of interest would be identified only from firms with
multiple plausibly exogenous CEO exits.
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similar to our estimates of δOP in Table 1 (columns 1, 2, and 3). In column 4, we estimate

a regression equation on the full sample that measures the direct effect of CEO changes and

its interaction with the new management’s optimism. Specifically, we estimate

∆ logLit = δNoChangeoptit + δChange(optit × ChangeCEOit) + αChangeChangeCEOit

+ ψ opti,t−1 + τ ′Xit + χj(i),t + εit
(243)

where ChangeCEOit is an indicator for our plausibly exogenous CEO change events. We

find that CEO changes in isolation reduce hiring (αChange < 0) but also that the effect of

optimism is magnified when it accompanies a CEO change (δChange > 0). This is further

inconsistent with a story under which omitted fundamentals lead us to overestimate the

effect of optimism on hiring.

Contagiousness from CEO Change Spillovers. We next leverage changes in within-

sector and peer-set optimism induced by plausibly exogenous CEO changes as instruments for

the level of optimism within these groups. Concretely, we construct an instrument equal to

the contribution toward optimism from firms whose CEOs changed for a plausibly exogenous

reason, or

opt
ceo
j(i),t−1 =

1

|Mj(i),t|
∑

k∈Mc
j(i),t

optk,t−1 (244)

where Mj(i),t is the set of firms in industry j(i) at time t, and M c
j(i),t is the subset that

had plausibly exogenous CEO changes. We construct the peer-set instrument opt
ceo
p(i),t−1

analogously. We use (opt
ceo
j(i),t−1, opt

ceo
p(i),t−1) as instruments for (optj(i),t−1, optp(i),t−1) in the

estimation of Equation 19. We present the corresponding estimates in Table A23. We find

similar point estimates under IV and OLS, although the IV estimates are significantly noisier.

E.3 Narrative Optimism, Beliefs, and Hiring

In this appendix, we study whether narrative optimism, measured using text-analysis meth-

ods, matters for firm decisions conditional on firm-manager beliefs, measured from recorded

managerial guidance. We find that narrative optimism and measured expectations each

have predictive power conditional on the other for explaining hiring and capital investment.

These results suggest that textual optimism captures aspects of managers’ latent beliefs not

captured in traditional measurement of expectations (here, in guidance data).

Data. We collect data from IBES (the International Brokers’ Estimate System) on quan-

titative forecasts by company managers for three statistics: sales, capital expenditures

(CAPX), and earnings per share (EPS). As described in Section 3.1, we restrict to the
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first recorded forecast per fiscal year of that year’s variable. When managers’ guidance is

reported as a range, we code a point-estimate forecast as the range’s midpoint. For each

variable Z ∈ {Sales,Capx,Eps}, we calculated the manager’s predicted growth for fiscal year

t as

ForecastGrowthZit = log GuidanceForXit − logZi,t−1 (245)

For example, GuidanceForSalesit is the manager’s earliest recorded guidance within fiscal

year t for fiscal-year t sales, and Salesi,t−1 are recorded sales from fiscal year t− 1. Textual

narrative optimism optit is measured as in our main analysis.

Empirical Strategy. We re-create our main regression model, predicting hiring by optit

conditional on firm fixed effects and industry-by-time fixed effects. We now include, as

control variables, each of the ForecastGrowthZit variables:

∆ logLit = δOPoptit + δZ ForecastGrowthZit + γi + χj(i),t + εit (246)

The coefficient δOP measures the difference in hiring between textually optimistic and non-

optimistic firms, holding fixed forecasted growth about variable Z (and the fixed effects).

The coefficient δZ measures the marginal effect of forecasted growth, in variable Z, on hiring,

holding fixed whether the firm is optimistic or pessimistic (and the fixed effects). We also

estimate a variance with net investment, or ∆ logKit, on the left-hand side.

Results. Table A24 shows the results when hiring is the outcome. We find that forecasted

sales, CAPX, and earnings growth have positive effects of hiring, the first two of which are

statistically significant (columns 2-4). Nonetheless, conditional on these variables, optimism

has a positive effect on hiring of comparable magnitude to the baseline (column 1). The effect

is statistically significant conditional on forecasted sales and CAPX growth (respectively,

t = 1.80 and t = 4.54). Both optimism and forecasted EPS growth are insignificant predictors

of hiring on the small (N = 1290) sample for which we can obtain EPS growth forecasts.

To compare the magnitudes of effects, we can calculate standardized coefficients. These

have units of the effect of a one-standard-deviation change in the regressor on standard

deviations of the outcome. For column 2, the standardized coefficient on textual optimism

is 0.057 (SE: 0.0030) and the coefficient on predicted sales growth is 0.213 (SE: 0.0329). In

this sense, predicted sales growth, for the subset of firms for which it is available, explains

larger variations in hiring than textual optimism; but nonetheless, textual optimism has a

statistically and economically significant effect.

Table A25 shows analogous results when net capital investment is the outcome. As with

hiring, we verify that predicted sales and CAPX growth have statistically significant, positive
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effects on capital investment, and that optimism has a positive effect conditional on these

variables. Effects on the sub-sample with earnings guidance are noisy, for both the effects of

optimism and the effects of forecasts.

Discussion. We interpret our results in a model in which textual optimism, optit, is one

measurement of a non-fundamental shifter in firm managers’ beliefs. We validate this in-

terpretation in the paper by showing that optit: (i) predicts hiring, as reviewed above in

this note; (ii) does not predict future positive firm performance; and (iii) does correlate with

optimistic manager forecasts, when measured in a variety of ways. We interpret managerial

forecasts, about a variety of firm-specific variables, as alternative possible measurements of

beliefs and their non-fundamental component. We are agnostic, more or less, about which

of these measures explains more variation in firm actions or does so more precisely.

More broadly, while forecasts are quantitative, and provide hard information about man-

agers’ beliefs, they also capture at best only one or two moments of a probability distribution.

By contrast, our measures of text all us to capture information about managers’ beliefs that

they do not express numerically, i.e., we capture soft information about managers’ beliefs

(Liberti and Petersen, 2019). We find that this soft aspect of managers’ beliefs is impor-

tant for explaining their decisions conditional on hard information. This is consistent with

extensive economic and psychological evidence that humans do not naturally think prob-

abilistically (see e.g., Tversky and Kahneman, 1973). Language may reflect nuances not

present in the forecasts. These nuances are actually what we want to map to economic

models, where we (economists) introduce statistical beliefs to model sentiment. This is the

sense in which language might measure aspects of beliefs that are not captured in “measured

beliefs.” In this way, our results relate to a literature focusing on the decision-relevance of

measured beliefs (Gennaioli, Ma, and Shleifer, 2016). They are moreover consistent with

the literature focusing on the decision-relevance of textually measured firm-level variables

including reported risks (Hassan, Hollander, Van Lent, and Tahoun, 2019) and reported

uncertainty (Handley and Li, 2020).

E.4 State-Dependent Effects of Sentiment

Our main empirical framework assumes that the effect of narrative sentiment on hiring does

not depend on previous sentiment. As one concrete example, this rules out the possibility

that switching from relative optimism to relative pessimism has a larger effect than remaining

equally pessimistic for two consecutive periods. To test for such state-dependent effects, we
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estimate augmented regression equations of the form:

∆ logLit = δ0sentimentit + δ1sentimenti,t−1+

δ2(sentimentit × sentimenti,t−1) + γi + χj(i),t + τ ′Xit + εit
(247)

where sentimentit is our continuous measure of firm sentiment in language, (γi, χj(i),t) are

fixed effects at the firm and industry-by-time levels, and Xit is a vector of controls. This

model allows for the marginal effect of this fiscal year’s sentiment to depend on the level

of the previous fiscal year’s sentiment. In particular, if δ2 > 0, and the marginal effect of

sentiment is positive, then this marginal effect is higher for a previously positive firm; if

δ2 < 0, and the marginal effect of sentiment is positive, then this marginal is lower for a

previously positive firm.

Table A26 shows our results, for different choices of controls. We find significant evidence

of positive marginal effects for sentimentit and δ2 < 0, or larger marginal effects when lagged

sentiment is low. This asymmetry is quantitatively small, however, in the following sense.

The standard deviation of sentimenti,t−1 is 1.14. Using the estimates of column 1, a one-

standard-deviation increase in sentiment, starting from sentimenti,t−1 = 0, decreases the

marginal effect of sentimentit from 0.022 to 0.016.

E.5 Measuring Contagiousness via Granular Instrumental Vari-

ables

As an alternative strategy to estimate contagiousness, we apply the methods of Gabaix and

Koijen (2020) to construct “granular variables” that aggregate idiosyncratic variation in

large firms’ narrative loadings. We find evidence that the idiosyncratic optimistic updating

of large firms induces optimistic updating, a form of contagiousness.

Constructing the Granular Measures. We construct our granular instruments via the

following algorithm. We first estimate a firm-level updating regression that controls non-

parametrically for aggregate trends and parametrically for firm-level conditions. Specifically,

we estimate

optit = τ ′Xit + χj(i),t + γi + uit (248)

where χj(i),t is an industry-by-time fixed effect (sweeping out industry-specific aggregate

shocks), γi is a firm fixed effect (sweeping out compositional effects), and Xit is the largest

vector of controls used in the analysis of Section 4.1, consisting of: lagged log employment,

current and lagged log TFP, log stock returns, the log book to market ratio, and leverage. We

construct the empirical residuals ûit. To construct the aggregate granular variable, opt
g,sw
t ,
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we take a sales-weighted average of these residuals:

opt
g,sw
t =

∑
i

salesit∑
i salesit

ûit (249)

To construct an industry-level granular variable, opt
g,sw
j(i),t, we take the leave-one-out sales-

weighted average of the ûit:

opt
g,sw
t =

∑
i′:j(i)=j(i′),i′ 6=i

salesi′t∑
i salesi′t

ûi′t (250)

We also construct agggregate and industry (leave-one-out) averages of optit for comparison.

We denote these variables as opt
sw
t and opt

sw
j(i),t, respectively.

Empirical Strategy. At the aggregate level, we first consider a variant of our main model

Equation 18, but with one of the sales-weighted variables Zt ∈ {opt
sw
t , opt

g,sw
t }:

optit = u opti,t−1 + s Zt−1 + r ∆ log Yt−1 + γi + εit (251)

The coefficient s measures contagiousness with respect to the sales-weighted measures of

optimism. We estimate Equation 251 by OLS, and also estimate a version in which the

granular variable opt
g,sw
t is an instrumental variable for the raw sales-weighted average opt

sw
t .

Similarly, at the industry level, we estimate the model

optit = uind opti,t−1 + sind Zj(i),t−1 + rind ∆ log Yj(i),t−1 + γi + χt + εit (252)

for Zj(i),t ∈ {opt
sw
j(i),t, opt

g,sw
j(i),t}. As above, we estimate this first via OLS for each outcome

variable, and then via IV where the granular variable opt
g,sw
j(i),t is an instrument for the raw

sales-weighted average opt
sw
j(i),t.

Results. We present our results in Table A27. First, studying aggregate contagiousness,

we find strong evidence that s > 0 when measured with the raw sales-weighted average or

its granular component (columns 1 and 2). We moreover find significant evidence of s > 0

in the IV estimation (column 3). Our IV point estimate of ŝ = 0.308 greatly exceeds the

OLS estimate of ŝ = 0.0847.

At the industry level, we find strong evidence of contagiousness via the sales-weighted

measure (column 4). We find imprecise estimates, centered around 0, for contagiousness

measured with the granular variable (column 5) or via the granular IV (column 6). However,

the granular IV estimate is noisily estimated and is not significantly different from the point

estimate of column 4.
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F Additional Details on Model Quantification

F.1 Solution of Model With Persistent Fundamentals

We first provide the exact solution of the model when fundamentals follow an AR(1) process.

We build on the analysis of Appendix B.5, which allows for (among other features) persistent

fundamentals.

Law of Motion for Output. Log aggregate productivity follows the process

log θt = (1− ρ)µ+ ρ log θt−1 + σζt (253)

with ζt ∼ N(0, 1) IID. We continue to assume, as in our main analysis, that there are two

narratives associated with high and low values of µ, µO > µP , while the true value is µ = 0.

Proposition 13 establishes that equilibrium can be written as (f does not depend on θt−1

here as all agents believe persistence is ρ)

log Yt = a0 + a1 log θt + a2 log θt−1 + f(Qt) (254)

where we normalize a0 = 0. We define the fundamental component of output as log Yt−f(Qt):

log Y f
t = a1 log θt + a2 log θt−1 (255)

Subtracting ρ log Y f
t−1 from both sides, the above becomes an ARMA(1, 1) process:

log Y f
t − ρ log Y f

t−1 = a1σζt + a2σνt−1 (256)

It remains to solve for the coefficients (a1, a2). In particular, Equations 172 and 173 give

the fixed-point equations which these coefficients must solve. We can simplify these fixed

point equations considerably in the case with optimism and pessimism about means and

compute δt,k for k ∈ {O,P}:

δt,k =
1

1+ψ−α
α

+ 1
ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
[log γi + κ log θt + (1− κ)((1− ρ)µk + ρ log θt−1)]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

+

(
1

ε
− γ
)

[a0 + a1 (κ log θt + (1− κ)((1− ρ)µk + ρ log θt−1)) + a2 log θt−1 + f(Qt)]

]
(257)
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Here, we have used the fact that posterior variances and perceived persistence are the same

for the two narratives, and the fact that µ(ek, θt−1) = (1− ρ)µk + ρ log θt−1. Therefore,

αδOP := δt,O − δt,P =
1

1+ψ−α
α

+ 1
ε

(
1 + ψ

α
+

(
1

ε
− γ
)
a1

)
(1− κ)(1− ρ)(µO − µP ) (258)

is the (time-invariant) average difference in actions between optimists and pessimists, as we

identify in the data.

Next, taking δt(e1) = δt,P and Qt as the fraction of optimists, we write Equation 173 as

log Yt = δt,P +
1

2

ε− 1

ε
σ̂2 +

ε

ε− 1
log

(
Qt exp

{
ε− 1

ε
αδOP

})
(259)

Substituting in the expression for δt,P , we can write the above up to a constant C that does

not depend on (log θt, log θt−1, Qt) as

log Yt = C +
1

1+ψ−α
α

+ 1
ε

[
1 + ψ

α
κ+

(
1

ε
− γ
)
a1κ

]
log θt

+
1

1+ψ−α
α

+ 1
ε

[
1 + ψ

α
(1− κ)ρ+

(
1

ε
− γ
)

(a1(1− κ)ρ+ a2)

]
log θt−1

+
ε

ε− 1
log

(
Qt exp

{
ε− 1

ε
αδOP

}) (260)

To obtain the coefficients in our desired representation, first note that we can write

f(Qt) =
ε

ε− 1
log

(
Qt exp

{
ε− 1

ε
αδOP

})
− ε

ε− 1
log

(
1

2
exp

{
ε− 1

ε
αδOP

})
(261)

This is the same form as our main analysis, with a normalization such that f(1/2) = 0. Next,

from matching coefficients, and noting the definition of ω = (1/ε−γ)/((1 +ψ−α)/α+ 1/ε),

a1 =
1

1− κω
1+ψ
α
κ

1+ψ−α
α

+ 1
ε

(262)

Finally, from matching coefficients for a2,

a2 =
1

1− ω
1

1+ψ−α
α

+ 1
ε

[
1 + ψ

α
+

(
1

ε
− γ
)
a1

]
(1− κ)ρ (263)

Updating Rule. We use the Linear-Associative-Contagious Updating rule introduced as

the Main Case (Equation 29), with a normalization. More specifically, we assume transition
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probabilities

PH
O (log Y,Q, ε) = [u+ r log Y + sQ+ CP + ε]10

PH
P (log Y,Q, ε) = [−u+ r log Y + sQ+ CP + ε]10

(264)

We choose CP such that an economy with neutral fundamentals (log θt = log θt−1 = 0), equal

optimists and pessimists (Q = 1/2), and no narrative shocks (ε = 0) continues to have equal

optimists and pessimists. Specifically, this implies CP = 1−s
2

.

F.2 Calibration Methodology

To calibrate the model, we proceed in four steps.

1. Setting macro parameters. We first set (ε, γ, ψ, α). In Section 7.1 and Table 6, we

describe our baseline method based on matching estimates of the deep parameters from

the literature. We also consider two other strategies as robustness checks. First, to

target estimated fiscal multipliers in the literature, we use the same external calibration

of α (returns to scale) and ε (elasticity of substitution), and set (γ, ψ) to match the

desired multiplier. Since the exact choice of these parameters is arbitrary subject to

obtain the correct multiplier, we normalize γ = 0 and vary only ψ. Second, we match

an estimate of the multiplier implied by our own data and an exact formula for the

omitted variable bias incurred in estimating the effect of optimism on hiring without

controlling for general-equilibrium effects via a time fixed effect. We outline that

strategy for estimating the multiplier in Section F.3 below, and we map this to deep

parameters exactly as described in our method for matching the literature’s estimated

multiplier.

2. Calibrating the effect of optimism on output. We observe that, conditional on (ε, γ, ψ, α)

and an estimate of δOP , we have identified f(Qt) as defined in Equation 261. We take

our estimate of δOP from column 1 in Table 1. This regression identifies δOP for the

reasons described in Corollary 1.

3. Calibrating the statistical properties of fundamentals (κ, ρ, σ).

(a) Computing fundamental output. We construct a cyclical component of output,

log Ŷt, as band-pass filtered US real GDP (Baxter and King, 1999).45 We apply

our estimated function f to our measured time series of optimism (see Figure 1)

45Specifically, we filter to post-war quarterly US real GDP data (Q1 1947 to Q1 2022). We use a lead-lag
length of 12 quarters, a low period of 6 quarters, and a high period of 32 quarters. We then average these
data to the annual level.
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to get an estimated optimism component of output. we then calculate

log Ŷ f
t = log Ŷt − f̂(Q̂t) (265)

(b) Estimating the ARMA representation. Using our 24 annual observations of log Ŷ f
t ,

we estimate a Gaussian-errors ARMA(1,1) model via maximum likelihood. Our

point estimates are

log Ŷ f
t − 0.086 log Ŷ f

t = .0078(ζt + .32 νt−1) (266)

This implies ρ = 0.086, a1σ = .0078, and a2σ = .32. ρ is therefore identified

immediately.

(c) Calibrating (κ, σ). We search non-linearly for values of (κ, σ) that satisfy a1σ =

0.0078 and a2σ = 0.32. There is a unique such pair, reported in Table 6, which

also is therefore the maximum likelihood estimate of (κ, σ).

4. Calibrating the updating rule (u, r, s, σ2
ε). The coefficients of the LAC updating model

are estimated in column 1 of Table 4. Conditional on the previous calibration, we set

σ2
ε so that within model Qt has the same standard deviation as the aggregate optimism

time series, which is 0.0533.

To calibrate the variant model with multi-dimensional narratives, we follow steps 1-3

exactly as above combined with a different procedure for step 4 described below:

4′. Calibrating the multi-dimensional updating rule ((βk, uk, rk, sk)Kk=1, σ
2
ε). To map theory

to data, we first transform each continuous narrative loading variable λ̂k,it (indexed by

narrative identifier k, firm i, and time period t) into a binary indicator for being above

the sample median,

λ̂bk,it = I
[
λ̂k,it ≥ med

(
λ̂k,it

)]
∈ {0, 1}

We study the 2 decision-relevant Shiller (2020) narratives and 11 decision-relevant topic

narratives indicated in Table 3. We let k ∈ {1, . . . , 13} index these narratives below.

(a) Calibrating the constellation weights β. To estimate the constellation weights, we

first regress optimism at the firm level on the binary indicators for each of the

selected narratives, conditional on firm and industry-by-time fixed effects:

optit =
13∑
k=1

τ kλ̂bk,it + γi + χj(i),t + νit (267)

For all k such that τ k < 0, we re-normalize the narrative to 1 − λ̂bk,it (i.e., an
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indicator for being below-median), such that all narratives positively contribute

toward the probability of being optimistic. We finally construct an estimator of

β̂k which re-normalizes the regression coefficients above to sum to one,

β̂k =
|τ̂ k|∑13
j=1 |τ̂ j|

(268)

(b) Calibrating the updating parameters (uk, rk, sk) and σ2
ε . To estimate the updating

rule paramaters, we take the uk, rk, and sk parameters from Figure A9, flipping

the sign of associativeness if we flipped τ k in step 4’(a). Conditional on the

previous calibration, we set σ2
ε so that within model Qt has the same standard

deviation as the aggregate optimism time series, which is 0.0533.

F.3 Estimating a Demand Multiplier in Our Empirical Setting

Here, we describe a method for estimating a demand multiplier in our data on optimism and

firm hiring. This circumvents the step of external calibration for the multiplier, but relies on

correct specification of the time-series correlates of aggregate optimism. Reassuringly, this

method yields a general-equilibrium demand multiplier that is comparable to our baseline

calibration and our literature-derived calibration.

Mapping the Model to Data. Extending Corollary 1 with the calculations of Appendix

B.5 and Appendix F.1, we first observe that firms’ hiring can be written in equilibrium as

∆ logLit = c̃0,i+ c̃10 log θt+ c̃11 log θt−1 + c̃2f(Qt)+ c̃3 log θit+ c̃4 logLi,t−1 +δOPλit+ζit (269)

where ζit is an IID normal random variable with zero mean and λit is the indicator for having

adopted the optimistic narrative.

In the data, our estimating equation without control variables had the following form

∆ logLit = γi + χj(i),t + δOPoptit + zit (270)

This maps to the structural model with γi = c̃0,i, χj(i),t = c̃10 log θt + c̃11 log θt−1 + c̃2f(Qt),

and zit = ζit + c̃3 log θit + c̃4 logLi,t−1. Under the hypothesis that E[zitoptit] = 0, then the

OLS regression of ∆ logLit on optit, conditional on the indicated fixed effects, identifies δOP .

We consider now an alternative regression equation which is a variant of the above spec-

ification without the time fixed effect and with parametric controls for aggregate TFP:

∆ logLit = γi + δOPoptit + c̃10 log θt + c̃11 log θt−1 + z̃it (271)
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Observe that the new residual, relative to the old residual, is contaminated by the equilibrium

effect of optimism. That is, z̃it = zit + c̃2f(Qt). To refine this further, we apply the linear

approximation f(Qt) ≈ αδOP

1−ω Qt and the observation that c̃2 = ω, so we can write z̃it =

zit + αω
1−ωδ

OPQt.

We now derive a formula for omitted variables bias in the estimate of δOP from an OLS

estimation of Equation 271. Let X denote a finite-dimensional matrix of data on optit, firm-

level indicators (i.e., the regressors corresponding to the firm fixed effects), and current and

lagged aggregate TFP. Similarly, let Y be a finite-dimensional matrix of data on ∆ logLit.

The OLS regression coefficient in this finite sample is δ̂ = ((X ′X)−1X ′Y )1. Using the

standard formula for omitted variables bias:

E[δ̂|X] = δOP +

(
(X ′X)−1E[X ′Q|X]

αω

1− ωδ
OP

)
1

= δOP
(

1 +
αω

1− ω
(
(X ′X)−1E[X ′Q|X]

)
1

) (272)

where Q is the vector of observations of Qt. We can then observe that:

(X ′X)−1E[X ′Q|X] = E
[
(X ′X)−1X ′Q|X

]
(273)

Which is the (expected) OLS estimate of β in the following regression:

Qt = γi + βQOoptit + βQθ log θt + βQθ−1
log θt−1 + εt (274)

But we observe that, averaging both sides, that γi = βQθ = βQθ−1
= 0 and βQO = 1. Thus,

((X ′X)−1E[X ′Q|X])1 = 1. We therefore obtain that:

E[δ̂ | X] = δOP
(

1 +
αω

1− ω

)
(275)

Hence, given a population estimate of the biased OLS estimate and an external calibra-

tion of α, we can pin down the complementarity ω and the multiplier 1
1−ω . Naturally this

strategy relies on correctly measuring aggregate TFP as measurement error in that variable

would contaminate this estimation. Moreover, it requires us to assume that all variation in

aggregate output that is not due to TFP is due to optimism or forces entirely orthogonal

to optimism; in view of our running assumption that the spread of optimism is associative,

these other forces therefore also have to be completely transitory, lest they be incorporated

into current optimism via associative updating in a previous period. These assumptions

are strong and are why we do not adopt this strategy for our main quantitative analysis.
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Nevertheless, we will find similar results, as we now describe.

Empirical Application and Results. To operationalize this in practice, we compare es-

timates of Equation 270 and 271. For the latter, we proxy TFP using the cyclical component

of both capacity adjusted and capacity un-adjusted TFP using the data of Fernald (2014).46

We moreover maintain the assumption of α = 1, or constant returns to scale, to map our

estimates back to implied multipliers.

Our results are reported in Table A28, along with the associated values of complementar-

ity ω and the multiplier 1
1−ω . Using capacity-adjusted and unadjusted TFP, we respectively

obtain estimates of 1.46 and 1.37 for the multiplier. These are lower than our baseline

estimate, but comparable to our estimates based on structural modeling in the literature.

Both estimates are below our baseline calibration of 1.96 but above our multiplier-literature

calibration of 1.33. In Table A19, we report our quantitative results under the assumed

multiplier of 1.46. We find that, as expected, these estimates imply an role for optimism

that is an intermediate between the baseline and multiplier-literature calibrations.

46Mirroring our filtering of US real GDP, we apply the Baxter and King (1999) band-pass filter to post-war
quarterly data using a lead-lag length of 12 quarters, a low period of 6 quarters, and a high period of 32
quarters. We then average these data to the annual level.
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G Our Analysis and Shiller’s Narrative Economics

Shiller (2017, 2020) introduces the notion of narrative economics and identifies “Seven Propo-

sitions of Narrative Economics” as a basis for the theoretical and empirical investigation of

narratives. In this section, we discuss our work, how our modeling of narratives relates to

Shiller’s ideas, and the relationship of our modeling, measurement, and results with these

propositions. In the process, we highlight how these propositions have informed our analysis,

discuss how our analysis contributes new insights, and propose avenues for future work to

more fully understand narratives and the macroeconomy.

G.1 The modeling of Narratives

We first describe how our modeling and measurement of narratives are designed to capture

the salient features of narratives that Shiller (2020) introduces in the preface:

In using the term narrative economics, I focus on two elements: (1) the word-of-

mouth contagion of ideas in the form of stories and (2) the efforts that people

make to generate new contagious stories or to make stories more contagious. First

and foremost, I want to examine how narrative contagion affects economic events.

The word narrative is often synonymous with story. But my use of the term

reflects a particular modern meaning given in the Oxford English Dictionary: “a

story or representation used to give an explanatory or justificatory account of

a society, period, etc.” Expanding on this definition, I would add that stories

are not limited to simple chronologies of human events. A story may also be a

song, joke, theory, explanation, or plan that has emotional resonance and that

can easily be conveyed in casual conversation.

To map this verbal definition to our framework (see Section 2 for the formal details and

notation), consider the following simple verbal rationale for our modeling approach. There is

a latent space of economic fundamentals (demand for goods) and endogenous outcomes (ag-

gregate output). An agent has some beliefs about economic fundamentals and corresponding

endogenous outcomes (π). They are told the following simple story by another agent about

the economy: “I didn’t hire (x) because aggregate output (Y ) will be low because demand

(θ) is weak.” This might cause the agent to believe this story that demand is weak and adopt

this narrative (placing weight λ on the implied distribution of fundamentals). Moreover, if

many of their friends tell them the story, they might be more positively inclined to believe

it. Of course, the agent doesn’t listen to the story blindly: they can see if demand was pre-

viously low (and might even have information about demand from their personal economic
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activities I) and might regard such a story is fanciful if their own experience contradicts

this claim. At the end of this process of contemplation, they update their own weight on the

narrative (via P ) and arrive at their new belief (π′).

Of course, the actual realization of output depends on the circulation of narratives in the

population (Q). If an agent believes the “demand is weak” narrative, then they will curtail

their hiring. Knowing this, other agents—even if they do not believe that latent demand

is weak—will believe that others will curtail their hiring, so that realized demand will be

weak. Then, knowing this, all agents further cut hiring. This paradox of thrift induces a

hierarchy of higher-order expectations regarding realized demand induced by the distribution

of narratives. This converges to a fixed point (Y ∗(Q) : Θ → Y) describing the mapping of

demand into aggregate output under the prevailing circulation of narratives.

Thus, while the primitive narrative began as a story about the strength of demand, in

equilibrium it takes on a meaning as not only describing exogenous economic outcomes,

but also endogenous economic outcomes. Concretely, given an equilibrium mapping, the

narrative endogenously induces the joint belief N∗ ∈ ∆(Θ×Y) given by N∗(θ, Y ) = N(θ)×
I[Y = Y ∗(θ)]. Importantly, the distribution of narratives Q and endogenous outcomes Y then

shape the distribution of narratives tomorrow Q′. The resulting joint dynamics of narratives

and endogenous outcomes are the subject of the theoretical and quantitative analysis of this

paper.

To ensure that we measure narratives, trace their impact on decisions and study their

spread, we operationalize this empirically by measuring narratives in agents’ use of language

by employing natural language processing methods that we have described in Section 3.1.

This allows us to use our framework to test if these text-based proxies for narratives shape

actions and spread across agents. As described in Section 4, we find strong evidence of these

premises.

We are, however, essentially silent about the more fundamental determinants of how

something comes to be a narrative or what makes a narrative contagious. As a result, we

do not speak to the issue of narrative generation suggested by Shiller. We do have one

empirical result that hints that firms use narratives to persuade financial analysts. In our

IBES strategy, we found that optimistic firms significantly overestimate their sales relative

to pessimistic firms. However, we found much weaker evidence that analysts believe that

firms are performing this overestimation. As a result, we take this as tentative evidence that

firms manage to persuade analysts of their predictions. We view further exploration of this

issue as an interesting angle for future work.
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G.2 Our Work and Shiller’s Seven Propositions

Proposition 1: Epidemics Can Be Fast or Slow, Big or Small. The model de-

veloped in this paper allows for various speeds of narrative dynamics as well as their size

and economic impact. Shiller, drawing on the epidemiology literature, identifies two param-

eters as particularly important in determining these features: the contagion rate and the

recovery rate. Viewed through this lens, our structural model from Section 5 postulates a

recovery rate of 1 − PO(log Yt, Qt) and a contagion rate of PP (log Yt, Qt). Thus, the funda-

mental parameters determining stubbornness u, associativeness r and contagiousness s are

key determinants of the speed and size of narrative epidemics within our model.

Yet further, by moving beyond a purely epidemiological model and studying the two-way

feedback between narratives and endogenous outcomes, we endogenize these rates as equi-

librium outcomes by characterizing the equilibrium map Qt, θt 7→ Yt. Thus, the parameters

of PO and PP as well as those determining the information and strategic interaction in the

economy affect the contagion and recovery rates in ways that we have characterized. Most

interestingly, beyond affecting the quantitative features of narrative dynamics (such as speed

and size), accounting for the dynamic complementarity of narratives affects their qualita-

tive features. Concretely, these same parameters delineate whether the economy is stable,

has a unique steady state, features hysteresis, or hump-shaped and discontinuous impulse

responses.

Moreover, we have used our measurement and empirical strategies to place empirical

discipline on these parameters. By so doing, we have been able to provide ballpark figures

for the likely quantitative importance of the narratives we have uncovered in our data.

Future work may lever alternative data sources and identification strategies to study different

narratives or more precisely estimate the parameters that we have studied.

Proposition 2: Important Economic Narratives May Comprise a Very Small

Percentage of Popular Talk. Our empirical analysis found that very little of the total

variation in narrative discussion is at the aggregate level (See Appendix Table A5). For

example, only 1% of the variation in optimism is captured in the aggregate time series.

Indeed, even for the 75% percentile of our estimated topic narratives, the fraction of variance

explained by the time series is less than 10%. Thus, movements in the intensity with which

narratives are discussed appear to be largely a cross-sectional phenomenon. As we have

shown, this does not at all mean that aggregate movements are unimportant: measured

movements in aggregate optimism can account for between 1/6 and 1/3 of GDP movements

over significant economic events. Thus, just as idiosyncratic income risk is much larger than

aggregate GDP risk, idiosyncratic narrative variation is much larger than aggregate narrative
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variation.

This echoes the observational account of Shiller that important economic narratives may

not feature prominently in popular talk and underlines the conclusion that even if movements

in aggregate narratives are not a large fraction of what agents think or discuss, they can

nevertheless be critical for understanding economic fluctuations.

Proposition 3: Narrative Constellations Have More Impact Than Any One Nar-

rative. A central concept in Shiller’s analysis is that of the narrative constellation: a

grouping of narratives around some basic idea that reinforces contagion. This is a concept

about which we are theoretically silent. However, our empirical analysis is designed to allow

for the possibility of narrative constellations. Take our analysis of optimism, for example.

Our measure does not necessarily capture one coherent economic narrative regarding the

strength of the outlook of the economy. What it instead captures is the total sentiment

expressed by firms, averaging across the various underlying narratives that they may be

adopting at any one instant. We investigate formally the extent to which our data support

this by using our more granular narratives as instruments for optimism (see Appendix Table

A14, columns 4) and find similar results to our baseline analysis. Moreover, in our quantita-

tive analysis, we studied how many co-evolving latent narratives can manifest as aggregate,

sentiment-driven fluctuations in the economy.

Moreover, our analysis of Shiller’s narratives allows us to pick up narrative constellations

to the precise extent that Shiller discusses the words comprising the underlying narratives

in these constellations in his own analysis. Finally, our topic analysis allows us to pick up

narrative constellations to the extent that narratives are used jointly in individual documents.

Thus,, we do account for the existence of contellations in our measurement and empirical

exercises. We view further analysis of this hypothesis as an interesting avenue for future

work.

Proposition 4: The Economic Impact of Narratives May Change Through Time.

Shiller suggests that the impact of economic narratives has the potential to change through

time. First, we evaluate this hypothesis in the context of our study in Section 4.1 of how

measured optimism affects hiring. Specifically, we consider our baseline regression model

∆ logLit = δOPoptit + γi + χj(i),t + εit (276)
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Our baseline estimate, in column 1 of Table 1, is δ̂OP = 0.0355. We now consider a variant

in which the coefficient δOP varies for each year 1996 ≤ τ ≤ 2019 in our sample:47

∆ logLit =
2019∑

τ=1996

δOPτ (optit × I[t = τ ]) + γi + χj(i),t + εit (277)

We show the coefficient series of δOPτ graphically in Figure A16. We observe no strong pattern

of a trend or business cycle in the coefficient estimates. We interpret this as evidence that

the main narrative studied in our empirical analysis has relatively stable effects on decisions

over time.

Second, we evaluate whether the contagiousness of optimism has changed through time.

One plausible hypothesis is that the rise of the internet and other information technology

may have contributed to a more connected knowledge-economy in which there is a faster

diffusion of narratives. To do this, we now estimate a variant of our basic regression equation

for estimating industry-level contagiousness in which we allow the coefficients, u, r, and s to

vary for each year 1996 ≤ τ ≤ 2019 in our sample:

optit =
2019∑

τ=1996

(
uτ opti,t−1 + sτ optj(i),t−1 + rτ ∆ log Yj(i),t−1

)
I[t = τ ] + γi + χt + εit (278)

We can identify time-specific effects only in the industry-specific setting—the corresponding

aggregate level regression with time-specific effects is not point identified. We plot the

estimated coefficient series of uτ , rτ , and sτ in Figure A17. We find that stubbornness and

contagiousness increase over time, while associativeness is close to flat. This is despite the

fact that, as we just showed, the effects of narrative optimism on hiring are stable through

time.

Viewed through the lens of our model, these findings—increased contagiousness and

stubbornness combined with stable effects on actions—suggests that narrative optimism’s

potential to “go viral” and induce dynamic hysteresis in the US economy is increasing over

time (see, e.g., Section 7.3). Exploring the macroeconomic implications of this finding may be

an interesting avenue for future work. Moreover, this macroeconomic finding underscores the

importance of directly testing the hypothesis that the internet and information technology

are culpable for the increase in contagiousness and stubbornness; insofar as these changes to

narrative propagation could have large effects on macroeconomic dynamics.

Proposition 5: Truth Is Not Enough to Stop False Narratives. Shiller emphasizes

that narrative epidemics can take place even when patently divorced from fundamentals.

47The number of firms with data reported for 2019 is very small, so our sample essentially ends in 2018.
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Our theoretical analysis shares this feature. Namely, when the contagiousness of a narrative

is high, this can swamp any adverse effects on contagion stemming from outcomes that do

not fit the narrative. This is made especially clear by our Proposition 2, in which multiple

steady states of narrative penetration can coexist even when one narrative (or even both

narratives) are false.

Proposition 6: Contagion of Economic Narratives Builds on Opportunities for

Repetition. Increased exposure to a narrative is likely to cause agents to pick it up. We

find evidence that agents are both more likely to retain a narrative they currently have and

that exposure to others holding the same narrative increases the chance that an agent both

picks up and retains a narrative. These findings are consistent with Shiller’s hypothesis

that oft-repeated narratives are more likely to result in epidemics. However, we do not

explore the idea that repeated exposure through time is likely to increase the persistence or

contagiousness of a narrative. We view this as an interesting avenue for future work.

Proposition 7: Narratives Thrive on Attachment: Human Interest, Identity, and

Patriotism. We do not investigate the idea that more interesting narratives are more likely

to be contagious in this paper. Studying this idea requires a deeper model for the origins of

the stubbornness, associativeness and contagiousness of narratives, which we do not attempt

to provide. We merely measure these parameters and take them as given. Of course, this

renders our analysis vulnerable to a form of the Lucas critique: if a policymaker attempted

to use our estimates as a guide for how they could affect the economy via manipulating

narratives, these coefficients could change if they fail to mimic the human interest, identity,

or patriotism that drove attachment to the narrative. While this issue is unimportant for our

positive analysis, an understanding of the deeper origins of narrative success is an interesting

avenue for future work—especially if a policymaker were to seek to guide narratives to achieve

certain economic outcomes.

G.3 The Perennial Economic Narratives: Our Empirical Findings

Shiller (2020) identifies nine perennial economic narratives based on historical analysis.

These narratives correspond to:

1. Panic versus Confidence

2. Frugality versus Conspicuous Consumption

3. The Gold Standard versus Bimetallism

4. Labor-Saving Machines Replace Many Jobs

5. Automation and Artificial Intelligence Replace Almost All Jobs
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6. Real Estate Booms and Busts

7. Stock Market Bubbles

8. Boycotts, Profiteers, and Evil Businesses

9. The Wage-Price Spiral and Evil Labor Unions

We have measured the presence of these narratives in firm language and studied which of

these matters for firm decision-making. Under our baseline LASSO specification, we found

that two of these narratives are relevant for firm hiring: Labor-Saving Machines Replace

Many Jobs and Stock Market Bubbles. Discussion of both is positively associated with firm

hiring (see column 1 of Appendix Table A14). Moreover, we find evidence of contagiousness

and stubbornness in firms holding onto these narratives (see Appendix Figure A9).

135



H Additional Figures and Tables

List of Figures

A1 Time-Series for Positive, Negative, and Their Difference . . . . . . . . . . . . 138

A2 Time-Series for Shiller’s Perennial Economic Narratives . . . . . . . . . . . . 139

A3 Time-Series for the Selected LDA Topics . . . . . . . . . . . . . . . . . . . . 140

A4 Heterogeneous Effects of Optimism on Hiring . . . . . . . . . . . . . . . . . 141

A5 Net Sentiment and Hiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A6 Dynamic Relationship between Optimism and Firm Fundamentals, Conference-

Call Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A7 Dynamic Relationship between Optimism and Firm Fundamentals, Continu-

ous Sentiment Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A8 Dynamic Relationship Between Optimism and Financial Variables . . . . . . 144

A9 The Contagiousness and Associativeness of Other Identified Narratives . . . 145

A10 Comparing the Hiring Effects and Associativeness of Narratives . . . . . . . 146

A11 Fundamental and Optimism Shocks That Explain US GDP . . . . . . . . . . 147

A12 Variance Decomposition for Different Values of Stubbornness and Contagious-

ness, No Optimism Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A13 Tendency Toward Extremal Optimism . . . . . . . . . . . . . . . . . . . . . 149

A14 Variance Contributions Toward Emergent Optimism . . . . . . . . . . . . . . 150

A15 Time-Varying Relationship Between Optimism and TFP . . . . . . . . . . . 150

A16 Time-Varying Effects of Narrative Optimism on Hiring . . . . . . . . . . . . 151

A17 Time-Varying Stubbornness, Contagiousness, and Associativeness of Narra-

tive Optimism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

List of Tables

A1 The Twenty Most Common Positive and Negative Words . . . . . . . . . . . 152

A2 The Twenty Most Common Words for Each Shiller Chapter . . . . . . . . . 153

A3 The Ten Most Common Words for Each Selected Topic . . . . . . . . . . . . 154

A4 Persistence and Cyclicality of Narratives . . . . . . . . . . . . . . . . . . . . 155

A5 Variance Decomposition of Narratives . . . . . . . . . . . . . . . . . . . . . . 155

A6 Robustness to Assumptions About Unobserved Selection When Estimating

the Effect of Narrative Optimism on Hiring . . . . . . . . . . . . . . . . . . . 156

A7 Narrative Optimism Predicts Hiring, With More Adjustment-Cost Controls . 157

136



A8 Narrative Optimism Predicts Hiring, Alternative Standard Errors . . . . . . 158

A9 Narrative Optimism Predicts Hiring, Instrumenting With Lag . . . . . . . . 159

A10 Narrative Optimism Predicts Hiring, Conference-Call Measurement . . . . . 160

A11 The Effect of Narrative Optimism on All Inputs . . . . . . . . . . . . . . . . 160

A12 The Effect of Narrative Optimism on Stock Prices, High-Frequency Analysis 161

A13 Textual Optimism and Optimistic Forecasts, Alternative Measurement . . . 161

A14 The Effects of All Selected Narratives on Hiring . . . . . . . . . . . . . . . . 162

A15 Narrative Optimism is Contagious and Associative, Alternative Standard Errors163

A16 Narrative Sentiment is Contagious and Associative . . . . . . . . . . . . . . 164

A17 Narrative Sentiment is Contagious and Associative, Controlling for Past and

Future Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A18 Narrative Optimism and Contagious and Associative, Instrumented With

Other Narratives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A19 Sensitivity Analysis for the Quantitative Analysis . . . . . . . . . . . . . . . 167

A20 An Empirical Test for Cycles and Chaos . . . . . . . . . . . . . . . . . . . . 168

A21 Data Definitions in Compustat . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A22 The Effect of Optimism on Hiring, CEO Change Strategy . . . . . . . . . . . 169

A23 The Contagiousness of Optimism, CEO Change Strategy . . . . . . . . . . . 170

A24 Narrative Optimism Predicts Hiring, Conditional on Measured Beliefs . . . . 170

A25 Narrative Optimism Predicts Investment, Conditional on Measured Beliefs . 171

A26 State-Dependent Effects of Sentiment on Hiring . . . . . . . . . . . . . . . . 172

A27 Optimism is Contagious and Associative, Granular IV Strategy . . . . . . . . 173

A28 Multiplier Calibrations via Under-Controlled Regressions of Hiring on Optimism174

137



Figure A1: Time-Series for Positive, Negative, and Their Difference
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Notes: Negative and Positive term frequency (first two panels) are cross-sectional averages of z-
score transformed variables. The third panel is the cross-sectional average of the difference between
the two, or sentimentit.
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Figure A2: Time-Series for Shiller’s Perennial Economic Narratives
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Notes: Each panel plots the time-series average of the narrative variable defined for the corre-
sponding chapter of Shiller (2020)’s Narrative Economics. The units are cross-sectional averages
of z-score transformed variables.
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Figure A3: Time-Series for the Selected LDA Topics
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Notes: Each panel plots the time-series average of scores for the corresponding topics, identified by
their three most common bigrams. The 11 topics are selected by the LASSO estimation described
in Section 4.1, and estimates of which are reported in Table A14. The units in each panel are
cross-sectional averages of z-score transformed variables.
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Figure A4: Heterogeneous Effects of Optimism on Hiring
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Notes: In each panel, we show estimates from the regression ∆ logLit =
∑r

q=1 βq · (optit ×Xqit) +
γi +χj(i),t + εit, where Xqit indicates quartile q of the studied variable: one minus the variable cost
share of sales, market capitalization, or book-to-market ratio. In all specifications, we trim the 1%
and 99% tails of the outcome variable. Error bars are 95% confidence intervals. Standard errors
are double-clustered by firm ID and industry-year.

Figure A5: Net Sentiment and Hiring
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Notes: In each panel, we show estimates from the regression ∆ logLit =
∑10

q=1 βq · (sentimentiqt) +
τ ′Xit + γi + χj(i),t + εit, where sentimentiqt indicates decile q of the continuous sentiment variable.
Panel (a) estimates this equation without controls (like column 1 of Table 1); panel (b) adds controls
for lagged labor and current and lagged log TFP (like column 2 of Table 1); and panel (c) adds
controls for the log book to market ratio, log stock return, and leverage (like column 3 of Table
1). The excluded category in each regression is the first decile of sentimentit. In all specifications,
we trim the 1% and 99% tails of the outcome variable. Error bars are 95% confidence intervals.
Standard errors are double-clustered by firm ID and industry-year.
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Figure A6: Dynamic Relationship between Optimism and Firm Fundamentals, Conference-
Call Measurement
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Notes: The regression model is Equation 14 (as in Figure 2), but measuring optimism from sales and
earnings conference calls. Each coefficient is estimated from a separate projection regression. The
outcomes are (a) the log change in TFP, calculated as described in Appendix D.2, (b) the log stock
return inclusive of dividends, and (c) changes in profitability, defined as earnings before interest
and taxes (EBIT) as a fraction of the previous fiscal year’s variable costs. In all specifications, we
trim the 1% and 99% tails of the outcome variable. Each coefficient is estimated from a separate
projection regression. Error bars are 95% confidence intervals.
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Figure A7: Dynamic Relationship between Optimism and Firm Fundamentals, Continuous
Sentiment Measurement
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Notes: The regression model is Equation 14 (as in Figure 2), but using the continuous variable
sentimentit. Each coefficient is estimated from a separate projection regression. The outcomes
are (a) the log change in TFP, calculated as described in Appendix D.2, (b) the log stock return
inclusive of dividends, and (c) changes in profitability, defined as earnings before interest and taxes
(EBIT) as a fraction of the previous fiscal year’s variable costs. In all specifications, we trim the
1% and 99% tails of the outcome variable. In all specifications, we trim the 1% and 99% tails of the
outcome variable. Error bars are 95% confidence intervals. Standard errors are two-way clustered
by firm ID and industry-year.
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Figure A8: Dynamic Relationship Between Optimism and Financial Variables
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Notes: The regression model is Equation 14 (as in Figure 2), but with financial fundamentals
as outcomes. Each coefficient is estimated from a separate projection regression. The outcome
variables are: (a) the fiscal-year-to-fiscal-year difference in leverage, which is total debt (short-term
debt plus long-term debt); (b) sale of common and preferred stock minus buybacks, normalized by
the total equity outstanding in the previous fiscal year; (c) short-term debt plus long-term debt
issuance, normalized by the total debt in the previous fiscal year; and (d) total dividends divided
by earnings before interest and taxes (EBIT). In all specifications, we trim the 1% and 99% tails
of the outcome variable. Error bars are 95% confidence intervals. Standard errors are two-way
clustered by firm ID and industry-year.
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Figure A9: The Contagiousness and Associativeness of Other Identified Narratives
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Notes: For each narrative, we estimate the analog of Equation 18. We first transform each contin-
uous narrative loading variable λ̂k,it (indexed by narrative identifier k, firm i, and time period t)
into a binary indicator for being above the sample median,

λ̂bk,it = I
[
λ̂k,it ≥ med

(
λ̂k,it

)]
∈ {0, 1}

We then estimate
λ̂bk,it = uk λ̂

b
k,i,t−1 + sk λ̂bk,it + rk ∆ log Yt−1 + γi + εit

where λ̂bk,it denotes an aggregate average of the binary variable. The three panels respectively
show our estimates, for each narrative k, of (uk, sk, rk). The error bars are 95% confidence intervals
based on double-clustered (firm and industry-year) standard errors.
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Figure A10: Comparing the Hiring Effects and Associativeness of Narratives
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Notes: For each narrative, we estimate the analog of Equation 12 with λ̂bk,it, a binary indicator for
the narrative weight k being above the sample median (for firm i at time t), in place of optit (see the
notes for Figure A9 for details about constructing these variables). The x-axis of this figure shows
the estimated hiring coefficients δk and the y-axis shows the estimated associativeness coefficients
rk (see Figure A9). Each point is labeled by its running short name, and the solid line is a best-fit
trend based on these fourteen points.
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Figure A11: Fundamental and Optimism Shocks That Explain US GDP
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Notes: This figure shows the shocks that rationalize movements in optimism and detrended real
GDP in recent US history, as analyzed in Section 7.2. The solid line is the exogenous process
for fundamental output and the dashed line is the sequence of shocks in narrative evolution. The
dashed line is rescaled by δOP (1− ω)−1 to be, up to linear approximation of f , in units of output.
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Figure A12: Variance Decomposition for Different Values of Stubbornness and Contagious-
ness, No Optimism Shocks

Notes: This Figure replicates Figure A12, with a different color bar scale, in the variant model with
no exogenous shocks to optimism. Calculations vary u and s, holding fixed all other parameters at
their calibrated values. The shading corresponds to the fraction of variance explained by optimism,
or Share of Variance Explained0 defined in Equation 56. The plus is our calibrated value of (u, s),
corresponding to a variance share 4.7%, and the dotted line is the boundary of a 95% confidence
set. The dots are calibrated values for other narratives from Figure A9. The dashed line is the
condition of extremal multiplicity from Corollary 3 and Equation 44.
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Figure A13: Tendency Toward Extremal Optimism

Notes: This Figure plots, in color, the fraction of time that optimism Qt lies outside of the range
[0.25, 0.75] and therefore concentrates at extreme values. Calculations vary u and s, holding fixed all
other parameters at their calibrated values. The plus is our calibrated value of (u, s), corresponding
to an extremal share of 0%, and the dotted line is the boundary of a 95% confidence set. The dots
are calibrated values for other narratives from Figure A9. The dashed line is the condition of
extremal multiplicity from Corollary 3 and Equation 44.
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Figure A14: Variance Contributions Toward Emergent Optimism
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Notes: This Figure plots each granular narrative’s contribution toward the variance of emergent
optimism in the constellations model (Section 7.4) against the condition number for extremal
multiplicity (Equation 57). Each dot corresponds to one of the thirteen granular narratives.

Figure A15: Time-Varying Relationship Between Optimism and TFP
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Notes: Each dot is a coefficient βτ estimated from Equation 186, corresponding to a year-specific
effect of binary optimism (optit) on log TFP (log θ̂it). The outcome variable is firm-level log TFP,
log θit, and the regressors are indicators for binary optimism interacted with year dummies. In the
regression, we trim the 1% and 99% tails of the outcome variable. Error bars are 95% confidence
intervals, based on standard errors clustered by firm and industry-time.
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Figure A16: Time-Varying Effects of Narrative Optimism on Hiring
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Notes: Each dot is a coefficient δOPτ estimated from Equation 277, capturing a year-specific effect
of binary optimism (optit) on hiring (∆ logLit). Error bars are 95% confidence intervals, based on
standard errors clustered by firm and industry-year.

Figure A17: Time-Varying Stubbornness, Contagiousness, and Associativeness of Narra-
tive Optimism
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Notes: Each dot is a coefficient estimated from Equation 278, and error bars are 95% confidence
intervals, based on standard errors clustered by firm and industry-year. Panel (a) plots the stub-
bornness coefficients on opti,t−1, uτ ; panel (b) plots the contagiousness coefficients on optj(i),t−1,
sτ ; and panel (c) plots the associativeness coefficients on ∆ log Yj(i),t−1, rτ .
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Table A1: The Twenty Most Common Positive and Negative Words

Positive Negative
well loss
good decline

benefit disclose
high subject
gain terminate

advance omit
achieve defer
improve claim

improvement concern
opportunity default

satisfy limitation
lead delay

enhance deficiency
enable fail
able losses
best damage
gains weakness

improvements adversely
opportunities against

resolve impairment

Notes: The twenty most common lemmatized words among the 230 positive words and 1354 neg-
ative words. They are listed in the order of their document frequency. The words are taken from
the Loughran and McDonald (2011) dictionary, as described in Section 3.2.

152



Table A2: The Twenty Most Common Words for Each Shiller Chapter

Panic Frugality Gold Standard Labor-Saving Machines Automation and AI Real Estate Stock Market Boycotts Wage-Price Spiral
bank help standard replac replac price chapter price countri

consum hous book produc appear appear peopl profit labor
appear buy money technolog show real specul good union
show home run appear question find drop consum ask

forecast famili paper book suggest hous play start wage
economi lost peopl power labor estat depress fall inflat
suggest display metal save ask buy warn buy strong

run job depress problem run home peak wage world
concept peopl eastern labor worker citi great inflat mile
peopl explain almost innov vacat land today world peopl
grew phrase depositor run autom movement get cut happen

around depress young wage human world decad shop depress
weather postpon today worker univers tend reaction peopl war

figur car want electr world peopl newspap explain tri
confid justifi went mechan machin never news campaign wrote
wall cultur decad human job search storm play peak

happen fashion idea world peopl specul saw depress great
depress unemploy man machin answer explain memori behavior recess

tri great newspap job around popul interview postpon went
unemploy fault popular invent figur phrase watch war get

Notes: The twenty most common lemmatized words among the 100 words that typify each Shiller (2020) narrative. Our selection
procedure is described in Section 3.2.
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Table A3: The Ten Most Common Words for Each Selected Topic

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
Lem. Word Weight Lem. Word Weight Lem. Word Weight Lem. Word Weight Lem. Word Weight Lem. Word Weight
lease 0.047 business 0.052 value 0.088 advertising 0.029 financial 0.051 stock 0.049
tenant 0.042 public 0.025 fair 0.082 retail 0.028 control 0.02 compensation 0.039
landlord 0.03 combination 0.024 loss 0.024 brand 0.018 internal 0.019 tax 0.039
lessee 0.017 merger 0.023 investment 0.024 credit 0.018 material 0.013 share 0.028
rent 0.016 class 0.015 asset 0.022 consumer 0.017 affect 0.012 income 0.023
lessor 0.014 offer 0.014 debt 0.02 distribution 0.016 officer 0.011 average 0.019
property 0.012 share 0.013 gain 0.019 card 0.015 base 0.01 expense 0.018
term 0.011 account 0.011 credit 0.019 marketing 0.015 information 0.01 asset 0.016
day 0.009 ordinary 0.01 level 0.017 food 0.013 make 0.01 outstanding 0.016
provide 0.008 private 0.01 financial 0.016 store 0.013 business 0.01 weight 0.015

Topic 7 Topic 8 Topic 9 Topic 10 Topic 11
Lem. Word Weight Lem. Word Weight Lem. Word Weight Lem. Word Weight Lem. Word Weight
gaming 0.035 debt 0.039 reorganization 0.048 court 0.038 technology 0.018
service 0.029 credit 0.039 bankruptcy 0.047 settlement 0.027 revenue 0.017
network 0.022 facility 0.037 plan 0.044 district 0.021 development 0.015
wireless 0.021 senior 0.028 predecessor 0.036 certain 0.019 business 0.013
local 0.019 interest 0.026 successor 0.027 litigation 0.016 customer 0.012
cable 0.015 agreement 0.021 chapter 0.021 action 0.016 stock 0.012
provide 0.014 cash 0.019 asset 0.019 complaint 0.012 product 0.012
equipment 0.013 rate 0.016 court 0.018 damage 0.011 support 0.009
access 0.013 term 0.016 cash 0.016 approximately 0.011 market 0.009
video 0.012 certain 0.014 certain 0.014 case 0.01 service 0.008

Notes: The ten most common words (lemmatized bigrams) in each topic estimated by LDA and selected by our LASSO procedure as
relevant for hiring (see Section 4.1). Weights correspond to relative importance for scoring the document. The LDA model and our
estimation procedure are described in Section 3.2.
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Table A4: Persistence and Cyclicality of Narratives

Correlation with
Narrative Nt Nt−1 ut−1 ut ut+1

Optimism 0.754 -0.283 -0.368 -0.287
Topic Narratives (25th) 0.810 -0.430 -0.307 -0.210
Topic Narratives (median) 0.935 0.003 -0.143 -0.092
Topic Narratives (75th) 0.965 0.339 0.252 0.077
Shiller Narratives (25th) 0.792 -0.379 -0.379 -0.367
Shiller Narratives (median) 0.805 0.043 0.088 -0.034
Shiller Narratives (75th) 0.884 0.541 0.422 0.246

Notes: Calculated with annual data from 1995 to 2019 for optimism and the topics, and 1995
to 2017 for the Shiller Narratives. ut is the US unemployment rate. The quantiles for Shiller
Narratives and Topic Narratives are the quantiles of the distribution of the variable in that column
within each set of narratives.

Table A5: Variance Decomposition of Narratives

Fraction Variance Explained By Means
Narrative Nit t Ind. Ind. x t Firm All

Net Sentiment 0.014 0.053 0.082 0.511 0.530
Optimism 0.011 0.041 0.067 0.427 0.444
Shiller Narratives (25th) 0.002 0.050 0.062 0.758 0.761
Shiller Narratives (median) 0.002 0.071 0.087 0.763 0.770
Shiller Narratives (75th) 0.003 0.095 0.109 0.793 0.794
Topic Narratives (25th) 0.010 0.003 0.049 0.252 0.306
Topic Narratives (median) 0.035 0.014 0.099 0.420 0.575
Topic Narratives (75th) 0.087 0.071 0.237 0.645 0.735

Notes: Each cell is 1−Var[N⊥it ]/Var[Nit], where Nit is the narrative intensity and N⊥it is the same
after projecting out means at the indicated level. The last column (“All”) partials out industry-
by-time means and firm means.
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Table A6: Robustness to Assumptions About Unobserved Selection When Estimating the
Effect of Narrative Optimism on Hiring

Panel A: Regression Estimates

(1) (2)
Outcome is ∆L⊥it

opt⊥it 0.0373 0.0305
Controls X

N 39,298 39,298
R2 0.005 0.129

Panel B: Oster (2019) Statistics

(1) (2)
R̄2 is

ˆ̄R2 = 0.459 R̄2
Π = 0.387

λ∗ (δOP = 0) 1.691 2.151
δ∗OP (λ = 1) 0.0126 0.0165

Notes: This table summarizes the coefficient stability test described in Appendix E.1. Panel A
shows estimates of Equation 241, with and without controls for current and lagged log TFP and
lagged log labor. The estimate in column 1 differs from that in column 1 of Table 1 due to restricting
to a common sample in columns 1 and 2. The R2 values are for the model after partialing out
fixed effects, and hence correspond with unreported “within-R2” values in Table 1. Panel B prints
the two statistics of Oster (2019). In column 1, we set R̄2 equal to our estimated value of 0.459,
calculated as described in the text from an “over-controlled” regression of current hiring on lagged
controls and future hiring and productivity. In column 2, we use R̄2 given by three times the R2

in the controlled hiring regression. The first row (λ∗ (δOP = 0) reports the degree of proportional
selection that would generate a null coefficient. The second row (δ∗OP (λ = 1)) is the bias corrected
effect assuming that unobservable controls have the same proportional effect as observable controls.
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Table A7: Narrative Optimism Predicts Hiring, With More Adjustment-Cost Controls

(1) (2) (3) (4)
Outcome is ∆ logLit

optit 0.0305 0.0257 0.0235 0.0184
(0.0030) (0.0034) (0.0037) (0.0039)

Firm FE X X X X
Industry-by-time FE X X X X
logLi,t−1 X X X X
(log θ̂it, log θ̂i,t−1) X X X X
(logLi,t−2, log θ̂i,t−2) X X X
(logLi,t−3, log θ̂i,t−3) X X
Log Book to Market X
Stock Return X
Leverage X
N 39,298 31,236 25,156 21,913
R2 0.401 0.395 0.396 0.415

Notes: The regression model is Equation 12. Column 1 replicates column 2 of Table 1. Columns 2
and 3 add more lags of firm-level log employment and firm-level log TFP, and column 4 introduces
the baseline financial controls (i.e., those in column 3 of Table 1). In all specifications, we trim the
1% and 99% tails of the outcome variable. Standard errors are two-way clustered by firm ID and
industry-year.
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Table A8: Narrative Optimism Predicts Hiring, Alternative Standard Errors

(1) (2) (3) (4) (5)
Outcome is

∆ logLit ∆ logLi,t+1

optit 0.0355 0.0305 0.0250 0.0322 0.0216
(0.0030) (0.0030) (0.0032) (0.0028) (0.0037)
[0.0031] [0.0026] [0.0031] [0.0040] [0.0034]
{0.0035} {0.0026} {0.0025} {0.0043} {0.0036}

Firm FE X X X X
Industry-by-time FE X X X X X
Lag labor X X X X
Current and lag TFP X X X X
Log Book to Market X
Stock Return X
Leverage X
N 71,161 39,298 33,589 40,580 38,402
R2 0.259 0.401 0.419 0.142 0.398

Notes: This Table replicates the analysis of Table 1 with alternative standard error constructions.
Standard errors in parentheses are two-way clustered by firm ID and industry-year; those in square
brackets are two-way clustered by firm ID and year; and those in braces are two-way clustered by
industry and year. For columns 1-4, the regression model is Equation 12 and the outcome is the
log change in firms’ employment from year t− 1 to t. The main regressor is a binary indicator for
the optimistic narrative, defined in Section 3.2. In all specifications, we trim the 1% and 99% tails
of the outcome variable. In column 5, the regression model is Equation 13, the outcome is the log
change in firms’ employment from year t to t+ 1, and control variables are dated t+ 1.
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Table A9: Narrative Optimism Predicts Hiring, Instrumenting With Lag

(1) (2) (3) (4)
Outcome is ∆ logLit

optit 0.0925 0.106 0.102 0.0470
(0.0130) (0.0160) (0.0168) (0.0053)

Firm FE X X X
Industry-by-time FE X X X X
Lag labor X X X
Current and lag TFP X X X
Log Book to Market X
Stock Return X
Leverage X
N 63,302 35,768 31,071 36,953
First-stage F 773 478 366 3,597

Notes: All columns come from a two-stage-least-squares (2SLS) estimate of Equation 12, using
opti,t−1 as an instrument for optit. Specifically, the structural equation is

∆ logLit = δOP · optit + γi + χj(i),t + τ ′Xit + εit

the endogenous variable is optit and the excluded instrument is opti,t−1. In the last row, we report
the first-stage F statistic associated with this equation. In all specifications, we trim the 1% and
99% tails of the outcome variable. Standard errors are two-way clustered by firm ID and industry-
year.
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Table A10: Narrative Optimism Predicts Hiring, Conference-Call Measurement

(1) (2) (3) (4) (5)
Outcome is

∆ logLit ∆ logLi,t+1

optCCit 0.0277 0.0173 0.0121 0.0237 0.0123
(0.0038) (0.0040) (0.0038) (0.0038) (0.0044)

Industry-by-time FE X X X X X
Firm FE X X X X
Lag labor X X X X
Current and lag TFP X X X X
Log Book to Market X
Stock Return X
Leverage X
N 19,625 11,565 10,851 11,919 11,416
R2 0.300 0.461 0.467 0.172 0.429

Notes: The regression models are identical to those reported in Table 1, but using the measurement
of optimism from sales and earnings conference calls. In all specifications, we trim the 1% and 99%
tails of the outcome variable. Standard errors are two-way clustered by firm ID and industry-year.
In column 5, control variables are dated t+ 1.

Table A11: The Effect of Narrative Optimism on All Inputs

(1) (2) (3) (4) (5) (6)
Outcome is

∆ logLit ∆ logMit ∆ logKit

optit 0.0355 0.0305 0.0397 0.0193 0.0370 0.0273
(0.0030) (0.0030) (0.0034) (0.0033) (0.0034) (0.0036)

Industry-by-time FE X X X X X X
Firm FE X X X X X X
Lag input X X X
Current and lag TFP X X X
N 71,161 39,298 66,574 39,366 68,864 36,005
R2 0.259 0.401 0.298 0.418 0.276 0.383

Notes: ∆ logMt is the log difference of all variable cost expenditures (“materials”), the sum of cost
of goods sold (COGS) and sales, general, and administrative expenses (SGA). ∆ logKt is the value
of the capital stock is the log difference level of net plant, property, and equipment (PPE) between
balance-sheet years t− 1 and t. In all specifications, we trim the 1% and 99% tails of the outcome
variable. Standard errors are two-way clustered by firm ID and industry-year.
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Table A12: The Effect of Narrative Optimism on Stock Prices, High-Frequency Analysis

(1) (2) (3) (4) (5) (6)
Outcome is stock return on

Filing Day Prior Four Days Next Four Days
optit 0.000145 -0.000142 0.00106 0.000963 0.00173 0.00249

(0.0007) (0.0007) (0.0011) (0.0014) (0.0012) (0.0016)
Firm FE X X X X X X
Industry-by-FY FE X X X X X X
Industry-FF3 inter. X X X
N 39,457 39,457 39,396 17,710 39,346 19,708
R2 0.189 0.246 0.190 0.345 0.206 0.317

Notes: The regression equation for columns (1), (3), and (5) is Ri,w(t) = βoptit+γi+χj(i),y(i,t) +εit
where i indexes firms, t is the 10K filing day, w(t) is a window around the day (the same day,
the prior four days, or the next four days), and y(i, t) is the fiscal year associated with the specific
10-K. In columns (2), (4), and (6), we add interactions of industry codes with the filing day’s (i) the
market minus risk-free rate, (ii) high-minus-low return, and (iii) small-minus-big return. Standard
errors are two-way clustered by firm ID and industry-year.

Table A13: Textual Optimism and Optimistic Forecasts, Alternative Measurement

(1) (2) (3) (4)
GuidanceOptExPosti,t+1 GuidanceOptExPostCi,t+1

optit 0.0354 -0.000169
(0.0184) (0.0049)

sentimentit 0.0152 -0.000219
(0.0095) (0.0025)

N 3,817 3,780 3,754 3,719
R2 0.173 0.174 0.139 0.141

Notes: The regression model is Equation 15. The outcome in columns 1 and 2 is a binary indicator
for ex post optimism in guidance, and the outcome in columns 3 and 4 is the difference between the
log guidance value and the log realized sales. optit is the binary measure of narrative optimism,
and sentimentit is the underlying continuous measure from which optit is constructed. In all
specifications, we trim the 1% and 99% tails of the outcome variable. Standard errors are two-way
clustered by firm ID and industry-year.
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Table A14: The Effects of All Selected Narratives on Hiring

(1) (2) (3) (4)
Outcome is ∆ logLit

OLS OLS OLS IV
Shiller: Labor-Saving Machines 0.0106

(0.0028)
Shiller: Stock Bubbles 0.00968

(0.0031)
Topic 1: Lease, Tenant, Landlord... 0.0109

(0.0017)
Topic 2: Business, Public, Combination... 0.0266

(0.0045)
Topic 3: Value, Fair, Loss... -0.00383

(0.0016)
Topic 4: Advertising, Retail, Brand... 0.00864

(0.0024)
Topic 5: Financial, Control, Internal... -0.000655

(0.0025)
Topic 6: Stock, Compensation, Tax... 0.0135

(0.0019)
Topic 7: Gaming, Service, Network... 0.0146

(0.0040)
Topic 8: Debt, Credit, Facility... -0.00584

(0.0022)
Topic 8: Reorganization, Bankruptcy, Plan... -0.00842

(0.0018)
Topic 10: Court, Settlement, District... -0.00749

(0.0019)
Topic 11: Technology, Revenue, Development... 0.0259

(0.0040)
optit 0.0305 0.0597

(0.0030) (0.0099)
Industry-by-time FE X X X X
Firm FE X X X X
Lag labor X X X X
Current and lag TFP X X X X
N 37,462 39,298 39,298 34,106
R2 0.413 0.405 0.401 0.130
First-stage F — — — 189.0

Notes: The first-stage equation for column 4 is described in Equation 17. In all specifications, we
trim the 1% and 99% tails of the outcome variable. Standard errors are two-way clustered by firm
ID and industry-year.
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Table A15: Narrative Optimism is Contagious and Associative, Alternative Standard Er-
rors

(1) (2) (3)
Outcome is optit

Own lag, opti,t−1 0.209 0.214 0.135
(0.0071) (0.0080) (0.0166)
[0.0214] [0.0220] [0.0281]
{0.0218} {0.0221} {0.0273}

Aggregate lag, optt−1 0.290
(0.0578)
[0.180]
{0.179}

Real GDP growth, ∆ log Yt−1 0.804
(0.2204)
[0.635]
{0.627}

Industry lag, optj(i),t−1 0.276 0.207
(0.0396) (0.0733)
[0.0434] [0.0563]
{0.0496} {0.0656}

Industry output growth, ∆ log Yj(i),t−1 0.0560 0.0549
(0.0309) (0.0632)
[0.0328] [0.0668]
{0.0428} {0.0772}

Peer lag, optp(i),t−1 0.0356
(0.0225)
[0.0259]
{0.0329}

Firm FE X X X
Time FE X X
N 64,948 52,258 8,514
R2 0.481 0.501 0.501

Notes: This Table replicates the analysis of Table 4 with alternative standard error constructions.
Standard errors in parentheses are two-way clustered by firm ID and industry-year; those in square
brackets are two-way clustered by firm ID and year; and those in braces are two-way clustered by
industry and year. Aggregate, industry, and peer average optimism are averages of the narrative
optimism variable over the respective sets of firms. Industry output growth is the log difference in
sectoral value-added calculated from BEA data, linked to two-digit NAICS industries.
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Table A16: Narrative Sentiment is Contagious and Associative

(1) (2) (3)
Outcome is sentimentit

Own lag, sentimenti,t−1 0.259 0.279 0.226
(0.0091) (0.0106) (0.0166)

Aggregate lag, sentimentt−1 0.253
(0.0519)

Real GDP growth, ∆ log Yt−1 2.632
(0.5305)

Industry lag, sentimentj(i),t−1 0.175 0.108
(0.0360) (0.0763)

Industry output growth, ∆ log Yj(i),t−1 0.108 0.142
(0.0522) (0.1312)

Peer lag, sentimentp(i),t−1 0.0234
(0.0188)

Firm FE X X X
Time FE X X
N 63,881 51,555 8,338
R2 0.568 0.599 0.602

Notes: The regression model is a variant of Equation 18 for column 1, and a variant of Equation 19
for columns 2 and 3, with the continuous variable sentimentit (and averages thereof) substituted
for binary optimism. Aggregate, industry, and peer average sentiment are averages of the narrative
sentiment variable over the respective sets of firms. Industry output growth is the log difference
in sectoral value-added calculated from BEA data, linked to two-digit NAICS industries. In all
specifications, we trim the 1% and 99% tails of sentimentit. Standard errors are two-way clustered
by firm ID and industry-year.
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Table A17: Narrative Sentiment is Contagious and Associative, Controlling for Past and
Future Outcomes

(1) (2) (3) (4) (5) (6) (7)
Outcome is sentimentit

Aggregate lag, sentimentt−1 0.253 0.385 0.410 0.340
(0.0519) (0.0651) (0.1103) (0.1785)

Ind. lag, sentimentj(i),t−1 0.175 0.151 0.213
(0.0360) (0.0409) (0.0654)

Time FE X X X
Firm FE X X X X X X X
Own lag, opti,t−1 X X X X X X X
(∆ log Yt+k)2k=−2 X X X
(∆ log Yj(i),t+k)2k=−2 X X X X
(∆ log θ̂i,t+k)2k=−2 X X
N 63,881 48,889 37,643 13,112 51,555 37,643 13,112
R2 0.568 0.578 0.599 0.640 0.599 0.601 0.642

Notes: The regression model is a variant of Equation 20 for column 1-4, and an analogous variant
of industry-level specification for columns 5-7 (i.e., Equation 19 with past and future controls),
with the continuous variable sentimentit (and averages thereof) substituted for binary optimism.
Columns 1 and 5 are “baseline estimates” corresponding, respectively, with columns 1 and 3 of
Table A16. The added control variables are two leads, two lags, and the contemporaneous value of:
real GDP growth (columns 2-4), industry-level output growth (columns 3-4 and 6-7), and firm-level
TFP growth (columns 4 and 7). In all specifications, we trim the 1% and 99% tails of sentimentit.
Standard errors are two-way clustered by firm ID and industry-year.
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Table A18: Narrative Optimism and Contagious and Associative, Instrumented With Other
Narratives

(1) (2) (3) (4)
Outcome is optit

OLS IV OLS IV
Own lag, opti,t−1 0.209 0.207 0.214 0.200

(0.0071) (0.0072) (0.0080) (0.0084)
Aggregate lag, optt−1 0.290 0.393

(0.0578) (0.0597)
Real GDP growth, ∆ log Yt−1 0.804 0.672

(0.2204) (0.2153)
Ind. lag, optj(i),t−1 0.276 0.437

(0.0396) (0.0748)
Ind. output growth, ∆ log Yj(i),t−1 0.0560 0.0390

(0.0309) (0.0342)
Firm FE X X X X
Time FE X X
N 64,948 64,569 52,258 47,536
R2 0.481 0.050 0.501 0.047
First-stage F — 795.3 — 19.8

Notes: In column 2, the endogenous variable is optt−1 and the instruments are (Shiller
k
t−1)

K∗S
k=1 and

(topic
k
t−1)

K∗T
k=1 where the sums are over the LASSO-selected narratives (see Table 3). In column 4, the

endogenous variable is optj(i),t−1 and the instruments are (Shiller
k
j(i),t−1)

K∗S
k=1 and (topic

k
j(i),t−1)

K∗T
k=1.

Standard errors are two-way clustered by firm ID and industry-year.
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Table A19: Sensitivity Analysis for the Quantitative Analysis

Parameters Results
α γ ψ ε ω 1

1−ω ĉQ(0) ĉQ(1) 2000-02 2007-09

Baseline 1.0 0.0 0.4 2.6 0.490 1.962 0.192 0.335 0.316 0.181
High ψ 1.0 0.0 2.5 2.6 0.133 1.154 0.175 0.359 0.186 0.106
High γ 1.0 1.0 0.4 2.6 -0.784 0.560 0.041 0.184 0.090 0.052
Empirical Multiplier 1.0 0.0 1.15 2.6 0.250 1.333 0.167 0.329 0.215 0.123
Calibrated Multiplier 1.0 0.0 0.845 2.6 0.313 1.455 0.168 0.324 0.235 0.134
High ε 1.0 0.0 0.21 5.0 0.490 1.962 0.109 0.240 0.317 0.181
Decreasing RtS 0.75 0.0 0.05 2.6 0.490 1.962 0.125 0.238 0.237 0.135

Notes: This table summarizes the quantitative results under alternative calibrations of the macroe-
conomic parameters, which we report along side their implied complementarity ω and demand
multiplier 1

1−ω . We report four statistics as the “results” in the last four columns. The first two
are the fraction of output variance explained statically, ĉQ(0), and at a one-year horizon, ĉQ(1),
by optimism. The second two are the fraction of output losses in the 2000-02 downturn and 2007-
09 downturn explained by fluctuations in narrative optimism. Baseline corresponds to our main
calibration. High ψ increases the inverse Frisch elasticity to 2.5, or decreases the Frisch elasticity
to 0.4. High γ increases the curvature of consumption utility (indexing income effects in labor
supply) from 0.0 to 1.0. Empirical Multiplier adjusts ψ to match an output multiplier in line with
estimates from Flynn, Patterson, and Sturm (2021). Calibrated multiplier adjusts ψ to match our
own calculation of the multiplier in our setting in Appendix F.3. High ε increases the elasticity of
substitution from 2.6 to 5.0, with ψ adjusting to hold fixed the multiplier. Decreasing RtS reduces
the returns-to-scale parameter α from 1.0 to 0.75, with ψ adjusting to hold fixed the multiplier.
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Table A20: An Empirical Test for Cycles and Chaos

(1)
Outcome is optit

α: Constant -0.051
(0.244)

α1: opti,t−1 0.655
(0.062)

β1: opti,t−1 · opti,t−1 0.052
(1.021)

β2: (1− opti,t−1) · opti,t−1 0.952
(1.006)

τ : (opti,t−1)2 -0.062
(1.034)

η: Logistic parameter 1.443
(0.698)

Firm FE X
N 67,648
R2 0.480

Notes: The regression model is Equation 203. η is a function of the regression coefficients defined
in Equation 204, and interpretable in the model of cycles and chaos in Appendix B.7. Standard
errors are two-way clustered by firm ID and industry-year. The standard error for η is calculated
using the delta method.

Table A21: Data Definitions in Compustat

Quantity Expenditure
Production, xit — sale

Employment, Lit emp emp × industry wage
Materials, Mit — cogs + xsga− dp

Capital, Kit ppegt plus net investment —
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Table A22: The Effect of Optimism on Hiring, CEO Change Strategy

(1) (2) (3) (4)
Outcome is ∆ logLit

optit 0.0253 0.0404 0.0362 0.0253
(0.0131) (0.0131) (0.0132) (0.0029)

optit × ChangeCEOit 0.0220
(0.0099)

ChangeCEOit -0.0232
(0.0088)

Industry-by-time FE X X X X
Lag optimism X X X X
Lag labor X X X
Current and lag TFP X X X
Log Book to Market X
Stock Return X
Leverage X
N 1,725 982 905 36,953
R2 0.243 0.375 0.375 0.134

Notes: The regression model is Equation 242 for columns 1-3, and Equation 243 for column 4.
The outcome is the log change in firms’ employment. optit is a binary indicator for the optimistic
narrative, defined in Section 3.2. ChangeCEOit is a binary indicator for whether firm i changed CEO
in fiscal year t due to death, illness, personal issues or voluntary retirement. In all specifications,
we trim the 1% and 99% tails of the outcome variable. Standard errors are two-way clustered by
firm ID and industry-year.
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Table A23: The Contagiousness of Optimism, CEO Change Strategy

(1) (2) (3) (4)
Outcome is optit

OLS IV OLS IV
Industry lag, optj(i),t−1 0.275 0.260 0.195 0.272

(0.0407) (0.2035) (0.0760) (0.5270)
Peer lag, optp(i),t−1 0.0437 0.129

(0.0236) (0.1677)
Firm FE X X X X
Time FE X X X X
Industry output growth, ∆ log Yj(i),t−1 X X X X

N 50,604 50,604 7,873 7,873
R2 0.503 0.051 0.508 0.020
First-stage F — 29.7 — 36.8

Notes: The IV strategies instrument the industry and/or peer lag with the CEO-change variation
in those averages. Standard errors are two-way clustered by firm ID and industry-year.

Table A24: Narrative Optimism Predicts Hiring, Conditional on Measured Beliefs

(1) (2) (3) (4)
Outcome is ∆ logLit

optit 0.0355 0.0232 0.0311 0.0203
(0.0030) (0.0129) (0.0068) (0.0164)

ForecastGrowthSalesit 0.157
(0.0329)

ForecastGrowthCapxit 0.0564
(0.0062)

ForecastGrowthEpsit 0.000961
(0.0104)

Ind.-by-time FE X X X X
Firm FE X X X X
N 71,161 2,908 7,312 1,290
R2 0.259 0.506 0.425 0.638

Notes: optit is textual optimism from the 10-K for fiscal year t. ForecastGrowthZit is defined in
the text as the log difference between manager guidance about statistic Z, for fiscal year t, with
last fiscal year’s realized value. In all specifications, we trim the 1% and 99% tails of the outcome
variable. Standard errors are two-way clustered by firm ID and industry-year.
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Table A25: Narrative Optimism Predicts Investment, Conditional on Measured Beliefs

(1) (2) (3) (4)
Outcome is ∆ logKit

optit 0.0370 0.0238 0.0251 0.00503
(0.0034) (0.0177) (0.0072) (0.0193)

ForecastGrowthSalesit 0.172
(0.0423)

ForecastGrowthCapxit 0.0943
(0.0079)

ForecastGrowthEpsit -0.0147
(0.0102)

Ind.-by-time FE X X X X
Firm FE X X X X
N 68,864 2,748 7,048 1,245
R2 0.276 0.496 0.472 0.661

Notes: This table is identical to Table A24, but has net capital investment ∆Kit as the outcome.
optit is textual optimism from the 10-K for fiscal year t. ForecastGrowthZit is defined in the text
as the log difference between manager guidance about statistic Z, for fiscal year t, with last fiscal
year’s realized value. In all specifications, we trim the 1% and 99% tails of the outcome variable.
Standard errors are two-way clustered by firm ID and industry-year.
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Table A26: State-Dependent Effects of Sentiment on Hiring

(1) (2) (3)
Outcome is ∆ logLit

sentimentit 0.0218 0.0172 0.0130
(0.0017) (0.0018) (0.0020)

sentimenti,t−1 0.00605 0.00877 0.00830
(0.0015) (0.0016) (0.0016)

sentimentit × sentimenti,t−1 -0.00497 -0.00501 -0.00404
(0.0008) (0.0008) (0.0008)

N 63,302 35,768 31,071
R2 0.257 0.394 0.416
Ind.-by-time FE X X X
Firm FE X X X
Lag labor X X
Current and lag TFP X X
Log Book to Market X
Stock Return X
Leverage X

Notes: This table reports estimates from Equation 247 with our baseline sets of controls. In all
specifications, we trim the 1% and 99% tails of the outcome variable. Standard errors are two-way
clustered by firm ID and industry-year.
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Table A27: Optimism is Contagious and Associative, Granular IV Strategy

(1) (2) (3) (4) (5) (6)
Outcome is optit

OLS OLS IV OLS OLS IV
Own lag, opti,t−1 0.212 0.213 0.210 0.219 0.220 0.219

(0.0071) (0.0071) (0.0073) (0.0080) (0.0081) (0.0081)
Agg. sales-wt. lag, opt

sw
t−1 0.0847 0.308

(0.0421) (0.1044)
Real GDP growth, ∆ log Yt−1 1.058 1.104 0.768

(0.2205) (0.2110) (0.2607)
Agg. sales-wt. granular lag, opt

g,sw
t−1 0.150

(0.0506)
Ind. sales-wt. lag, opt

sw
j(i),t−1 0.0728 0.0195

(0.0209) (0.0459)
Ind. output growth, ∆ log Yj(i),t−1 0.0851 0.0903 0.0886

(0.0325) (0.0336) (0.0333)
Ind. sales-wt. granular lag, opt

g,sw
j(i),t−1 0.00913

(0.0216)
Firm FE X X X X X X
Time FE X X X
N 64,948 64,948 64,948 52,258 50,842 50,842
R2 0.481 0.481 0.049 0.500 0.503 0.051
First-stage F — — 99.1 — — 262.3

Notes: This table estimates Equations 18 and 19, respectively modeling the spread of optimism
at the aggregate and industry level, using granular identification of spillovers (contagiousness).
opt

sw
t−1 and opt

sw
j(i),t−1 are sales-weighted averages of aggregate and industry optimism, respectively.

opt
g,sw
t−1 and opt

g,sw
j(i),t−1 are (lagged) sales-weighted averages of the non-fundamentally-predictable

components of firm-level optimism in the aggregate and in the industry, respectively, as explained
in Appendix E.5. In columns 3 and 6, we use the granular variables as instruments for the raw
sales-weighted averages. Standard errors are two-way clustered by firm ID and industry-year.
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Table A28: Multiplier Calibrations via Under-Controlled Regressions of Hiring on Opti-
mism

(1) (2) (3)
Outcome is ∆Lit

optit 0.0355 0.0516 0.0486
(0.0030) (0.0034) (0.0033)

Complementarity ω — 0.313 0.270
Multiplier 1

1−ω — 1.455 1.370

Industry-by-time FE X
Firm FE X X X
Current and lagged adjusted TFP X
Current and lagged unadjusted TFP X
N 71,161 65,508 65,508
R2 0.259 0.207 0.216

Notes: The regression models are introduced in Appendix F.3. The first column replicates Column
1 of Table 1. The second two columns remove the industry-by-time FE and control for the contem-
poraneous and lagged value of seasonally adjusted log TFP, respectively with and without capacity
utilization adjustment, as reported by the updated data series of Fernald (2014). The sample size
is lower in columns 2 and 3 due to the band-pass filtering being impossible for the last part of
the sample. The remaining rows give the implied complementarity ω and demand multiplier 1

1−ω ,
by comparing the coefficients with that of column 1 and applying the formula in Equation 275.
Standard errors are double-clustered by industry-year and firm ID.
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