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Abstract

To study the equilibrium implications of decision frictions, we introduce a new class

of control costs in continuum-player, continuum-action games in which agents interact

via an aggregate of the actions of others. The costs that we study accommodate a

rich class of decision frictions, including ex post misoptimization, imperfect ex ante

planning, cognitive constraints that depend endogenously on the behavior of others,

and consideration sets. We provide primitive conditions such that equilibria exist, are

unique, are efficient, and feature monotone comparative statics for action distribu-

tions, aggregates, and the size of agents’ mistakes. We apply the model to make robust

equilibrium predictions in a monetary business-cycle model of price-setting with plan-

ning frictions and a model of consumption and savings during a liquidity trap when

endogenous stress worsens decisions.
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1 Introduction

People commonly make mistakes that affect others. Consider a monopolistically competitive

firm choosing its price to maximize profits, taking into account projected demand and com-

petitors’ prices. The complexity of firms’ decision-making processes makes clear that even

though the problem is well-defined and an ideal solution surely exists, determining that solu-

tion is difficult. Thus, firms may fail to set the optimal price. Such a deviation from the ideal

price may affect all other competitors’ benefits from setting the right price—for instance, by

altering the residual demand that they face. Moreover, the pricing of other firms may di-

rectly influence the costs of setting the right price—for instance, if tough competition induces

managerial stress that contributes to worse decision-making. Thus, observed pricing arises

from a process of strategic mistakes : the combination of imperfect optimization and strategic

interaction that may affect both the benefits and the costs of precise decision-making.

To study such strategic mistakes, this paper introduces a model of non-parametric, state-

dependent stochastic choice in continuum-player games with a continuum of actions. Agents’

payoffs depend on their own action, an exogenous state, and a one-dimensional aggregate of

the cross-sectional distribution of others’ actions. Such a setting is ubiquitous in macroeco-

nomic models of price-setting (Woodford, 2003; Maćkowiak and Wiederholt, 2009; Costain

and Nakov, 2019), production (Angeletos and La’O, 2010, 2013; Benhabib et al., 2015;

Chahrour and Ulbricht, 2023), and beauty-contest games more generally (Morris and Shin,

2002; Angeletos and Pavan, 2007; Bergemann and Morris, 2013; Huo and Pedroni, 2020).

Agents face a problem of costly control : conditional on their conjecture for fundamentals

and others’ actions, they pick a stochastic choice pattern that trades off playing the best

actions with a cost that penalizes playing too precisely. We introduce a new family of control

cost functionals that are state-separable, i.e, total control costs are additive over states. These

costs allow us to model several kinds of decision frictions that have not previously been jointly

studied. The first is ex post misoptimization, as in the literatures on control costs (Stahl,

1990; Van Damme, 1991) and quantal response equilibrium (McKelvey and Palfrey, 1995;

Goeree et al., 2016), in which agents’ imprecise play responds to strategic incentives within

a given state of the world. The second is ex ante planning frictions, as in the literature on

costly information acquisition in games (see e.g., Yang, 2015; Morris and Yang, 2022; Hébert

and La’O, 2022; Denti, 2023), whereby agents must weigh the benefits of precise planning

for a state with the cost of that state never being realized. The third is exogenous and

endogenous state-dependence in control costs, as in Hébert and La’O (2022) and Angeletos

and Sastry (2023). The fourth is equilibrium determination of agents’ consideration sets,

i.e, the subset of actions that they play, as in Matějka (2015) and Stevens (2019).
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We show that, despite the rich behavioral patterns that our model accommodates, equi-

librium analysis remains tractable. Concretely, we provide four theoretical results that pro-

vide conditions for equilibrium existence, uniqueness, efficiency, and monotone comparative

statics for actions, aggregates, and the size of agents’ mistakes.

Toward establishing the existence and uniqueness of equilibrium, we first characterize

equilibrium as a functional fixed-point equation for the cross-sectional distribution of ac-

tions and provide primitive conditions under which this equilibrium fixed-point operator is

a contraction. This result follows from showing first that agents’ state-dependent stochas-

tic choice rules are monotone, i.e., they are increasing in the sense of first-order stochastic

dominance when aggregate actions are higher, and discounted, i.e., increasing aggregate out-

comes has a less than one-for-one effect on agents’ stochastic best replies. This requires three

primitive conditions: (i) that agents’ actions and aggregates are jointly complementary for

physical payoffs and the psychological costs of precise optimization; (ii) that this complemen-

tarity is dominated by the concavity of agents’ physical payoffs relative to their psychological

costs; and (iii) a technical restriction on the shape of agents’ cost functionals that allows

us to translate dominance in payoff units into first-order stochastic dominance in the space

of stochastic choice rules. Moreover, we show that the last of these assumptions is satisfied

under the two leading cost functions in the control costs literature: entropic and quadratic

costs. Second, we show that, if the equilibrium aggregator is (i) increasing in agents’ actions

and (ii) such that level shifts of the action distribution have less than one-for-one effects on

aggregates, then the equilibrium fixed-point operator is a contraction. These assumptions

on aggregation are satisfied under common aggregators, such as those that take the mean or

the median of the cross-sectional action distribution. Finally, since the equilibrium operator

is a contraction, the existence and uniqueness of equilibrium (Theorem 1) follows.

We next study equilibrium comparative statics. First, if actions, aggregates, and the

state are jointly complementary for agents’ physical payoffs and psychological costs, then the

unique equilibrium action distribution and aggregate are monotone in the state (Theorem 2).

Under a further condition that payoffs depend only on the distance between one’s own action

and some optimal action, we show that the size of agents’ mistakes is monotone in the state

when the ratio between the stakes of misoptimization and the cost of precise optimization is

monotone in endogenous and exogenous states (Theorem 3).

Turning to normative analysis, we provide a necessary condition for the efficiency of the

unique equilibrium: the average marginal physical benefit of increasing the aggregate action

must equal the average marginal psychological cost of so doing (Theorem 4).

We finally employ our results in two macroeconomic applications. The first application is

to price-setting in a monetary economy à la Woodford (2003) and Hellwig and Venkateswaran
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(2009), but where firms face ex ante planning frictions: firms must plan for what prices to

set across contingencies for the realized level of the money supply and inflation. We derive

and interpret conditions under which the aggregate price level, the distribution of prices, and

the dispersion of prices are monotone increasing in an exogenous shock to the money supply

in the unique equilibrium. We use these results to give a costly-planning explanation for the

empirical finding that there is a positive relationship between price dispersion and aggregate

inflation at rare and high, but not common and low, levels of inflation (Alvarez et al., 2019;

Nakamura et al., 2018). The key mechanism is that firms set more dispersed prices in rare,

highly inflationary states, because they did not invest many resources into forming precise

plans for these unlikely states.

The second application is to consumption and savings in a liquidity trap, in which agents’

incomes directly influence cognitive function. This is motivated by the experimental finding

that individuals make worse decisions when they are poor (Mani et al., 2013) and the survey

finding that individuals report being significantly distracted when near financial constraints

(Sergeyev et al., 2022). We derive and interpret conditions under which the unique equilib-

rium features aggregate output and a consumption distribution that is monotone increasing

in aggregate demand, while consumption dispersion decreases in aggregate demand as agents

become less cognitively constrained. We show that this economy features a novel externality:

when aggregate output is lower, agents’ decision costs are higher, and they make larger con-

sumption and savings mistakes. This mechanism provides a new explanation for the finding

that consumption dispersion rises in downturns (Berger et al., 2023), in our case because of

the equilibrium effect of low income causing stress that worsens decisionmaking.

We discuss two extensions of our analysis in the Appendix. First, in Appendix B, we pro-

vide a detailed comparison of our model with the mutual information model of Sims (2003).

Using a numerical example of a linear beauty contest (Morris and Shin, 2002), we observe

that the mutual information model does not imply monotone and discounted stochastic

choice rules and therefore opens the door to multiple equilibria defined by coordination on

specific support points for the action distribution. This analysis provides a direct counter-

example to the possibility that equilibrium analysis similar to ours is possible in workhorse

models of unrestricted information acquisition and illustrates the tractability advantage that

our model may have for specific applications. Second, in Appendix C, we study strategic

mistakes in binary-action coordination games, which are also ubiquitous in macroeconomics

and finance (Angeletos and Lian, 2016). We derive sufficient conditions on cognitive costs

and payoffs to ensure unique and monotone equilibria and illustrate our results in a canonical

investment game with linear payoffs (as in Yang, 2015).
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Related Literature. The main contribution of our paper is to provide a unified equi-

librium analysis of a wide variety of decision frictions—including ex post misoptimization,

imperfect ex ante planning, endogenous cognitive constraints, and endogenous consideration

sets—in aggregative games of the kind that are common in macroeconomics and finance

(see Angeletos and Lian, 2016, for a review). To our knowledge, comparable results on

uniqueness, efficiency, and monotone comparative statics for these games do not exist in

the literatures on the two most comparable decision frictions, random utility and costly

information acquisition. We detail our connection to these literatures below.

An influential model of equilibrium with non-vanishing “mistakes” induced by random

utility is the Quantal Response Equilibrium (QRE) of McKelvey and Palfrey (1995). These

authors add type-I extreme value noise to agents’ utility functions to smooth best responses

into “better responses” (see the review by Goeree et al., 2016). Subsequent work generalizes

this analysis by allowing for different noise distributions that imply different shapes of best-

replies (see e.g., Melo, 2022; Fosgerau et al., 2020; Allen and Rehbeck, 2021). Most related to

us, Melo (2022) studies games with a finite number of players and actions and general noise

distributions and, using convex analysis techniques, shows that QRE are unique if agents’

payoffs are sufficiently concave relative to the extent of strategic complementarity. Our

analysis differs from this literature’s in four important ways. First, we consider games with

a continuum of agents and actions. This is important because such games are common in

macroeconomics and finance and, outside of Melo’s (2022) analysis with discrete actions and

players, little remains understood about the uniqueness of QRE in games with a large number

of players and/or actions (Goeree et al., 2016). Second, we provide monotone comparative

statics results for action distributions, in terms of both first-order stochastic dominance and

dispersion. We are not aware of any analogous results in the random-utility literature for

the class of games that we study. Third, we can accommodate additional decision frictions

which are not well captured by fixed payoff noise—for instance, costly ex ante planning and

endogenous cognitive constraints. Finally, our analysis has meaningfully different normative

properties because we model control costs.

With unrestricted costly information acquisition, we are aware of few equilibrium re-

sults that apply to our setting. Hébert and La’O (2022) provide sufficient conditions for

equilibrium existence and efficiency in a setting with costly information acquisition under

restrictions, relative to our set-up, to consider only mean-critical payoff functions and only

the mean aggregator. Hébert and La’O (2022) provide an equilibrium uniqueness result only

when equilibria are efficient, while our result applies to both efficient and inefficient equilibria

under appropriate restrictions on complementarity arising from both payoffs and endogenous

cognitive costs. Yang (2015) and Morris and Yang (2022) study equilibrium existence and
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uniqueness in binary-action settings, to which we extend our analysis in Appendix C. To our

knowledge, no references study monotone comparative statics at our level of generality.

Our paper contributes to the theoretical literature on aggregative games (see Jensen,

2018, for a review) by studying these games under general decision frictions. Our analysis

also relates to a large literature on uniqueness in games with strategic complementarity

(e.g., Morris and Shin, 1998, 2002; Weinstein and Yildiz, 2007; Yang, 2015). Our proof

strategy is most closely related to Frankel et al. (2003) and Mathevet (2010), in that we

use contraction-mapping techniques, but differs in our use of variational techniques to derive

necessary conditions for best responses that imply monotonicity and discounting. Our results

on comparative statics are similar in spirit to those of Van Zandt and Vives (2007), but differ

in that we study different games, with decision frictions, and provide comparative statics for

action distributions.

Finally, our paper contributes to the literature on control costs and stochastic choice

by proposing a new class of state-separable cost functionals and applying them in games.

This builds upon the analysis of Harsanyi (1973), Stahl (1990), and Van Damme (1991)

who introduce specific control cost functionals that penalize the playing of sharply peaked

stochastic choice rules, and Mattsson and Weibull (2002), who axiomatize entropic costs.

Most relatedly, in decision problems, Fudenberg et al. (2015) axiomatize the class of additive

perturbed utility cost (APU) functionals which penalize the expected utility of a mixed

action with any convex function of the distribution of the mixed action. Our cost function is a

weighted sum of APU cost functionals over states, with a weighting function that can depend

arbitrarily on both exogenous and exogenous states. Concretely, with weights given by the

agents’ priors, our cost functional reduces to a state-by-state APU control cost functional

that models ex post misoptimization. With uniform weights across states, our cost functional

captures ex ante planning, as control costs must be incurred ex ante, while the benefits

of plans only realize with probabilities given by the agents’ priors. With state-dependent

weights, our cost functional allows for exogenous and endogenous state-dependence in the

difficulty of choosing precise stochastic choice rules. As we later argue (see Section 2.3),

capturing this broad range of behavior enables our class of cost functions to be consistent

with the empirical regularities from the psychometrics literature (see Woodford, 2020, for

a review), the literature on stress and decision-making (Mani et al., 2013; Sergeyev et al.,

2022), and the perceptual tests performed by Dean and Neligh (2022).

Outline. Section 2 introduces the model. Section 3 presents our main results on equi-

librium properties. Section 4 discusses applications of our main results. Section 5 briefly

discusses two extensions, a detailed comparison of state-separable and mutual information

costs and an analysis of binary-action games. Section 6 concludes.
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2 Model

2.1 Basic Set-up: Aggregative Games with Stochastic Choice

A continuum of identical agents is indexed by i ∈ [0, 1]. They take actions xi ∈ X =

[x, x] ⊂ R. Cross-sectional distributions of actions are aggregated by an aggregator functional

X : ∆(X ) → R. There is an underlying and payoff-relevant state of the world θ ∈ Θ ⊂ R.
The state space Θ is a finite set, over which the agent has full-support prior π ∈ ∆(Θ).

Agents have identical utility functions u : X × R × Θ → R, where u(x,X, θ) is an agent’s

utility from playing x when the aggregate is X and the state is θ. We assume that u and X

are continuous and bounded.1

Given a conjecture that the aggregate follows a law of motion X̃ : Θ → R, which lies in

the space of bounded functions B = {X̃|X̃ : Θ → R}, each agent chooses a stochastic choice

rule P : Θ → ∆(X ) with P (x|θ) describing the cumulative distribution of actions x taken

by the agent in state θ. When this admits a density function, we denote a stochastic choice

rule by p(x|θ). We call the set of measurable stochastic choice rules P . We model the cost of

“controlling mistakes” via a cost functional c : P × B → R. This cost may depend on both

the conjectured mapping from states to aggregates (as indicated) and on the prior for the

state of nature (suppressed, as this prior is fixed in our analysis). In the next subsection, we

specialize these costs to a specific class for our analysis.

The agent maximizes expected utility net of the control cost given their conjecture for

how aggregate outcomes depend on the state. This is summarized in the following program:

max
P∈P

∑
Θ

∫
X
u(x, X̃(θ), θ) dP (x|θ) π(θ)− c(P, X̃) (1)

An equilibrium in this context is a Nash equilibrium: agents’ play is optimal given aggregate

outcomes, and aggregate outcomes are those that are implied by agents’ play.2

Definition 1 (Equilibrium). An equilibrium is a collection of stochastic choice rules {P ∗
i }i∈[0,1]

and an equilibrium law of motion for aggregates X̂ : Θ → R such that:

1. All agents solve Program 1 under the conjecture that X̃(θ) = X̂(θ) for all θ ∈ Θ

2. The equilibrium law of motion is consistent with agents’ play, or X̂ = X ◦
∫
[0,1]

P ∗
i di

An equilibrium is symmetric if P ∗
i = P ∗ for all i ∈ [0, 1].

1Throughout, our notion of continuity for functionals is the sup norm.
2Methodologically, our setup recasts the game with incomplete information in the interim as an ex ante

game with complete information and a strategy space sufficiently rich to embed all profiles of state-dependent
mixed strategies. Morris and Yang (2022) use this approach to study binary-action games, as we also do in
Appendix C.
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2.2 State-Separable Cost Functionals

We now specialize to a new class of cost functionals that we introduce:

Definition 2 (State-Separable Cost Functional). A cost functional c has a state-separable

representation if there exists a strictly convex function ϕ : R+ → R and a weighting function

λ : R×Θ → R++ such that for any stochastic choice rule P with density p:

c(P, X̃) =
∑
Θ

λ(X̃(θ), θ)π(θ)

∫
X
ϕ(p(x|θ)) dx (2)

with the convention that the cost is ∞ if P does not have a density.

Formally, state-separable cost functionals are a weighted sum across states of the APU

cost functionals of Fudenberg et al. (2015). Informally, state-separable cost functionals

capture the idea that it is costly for agents to control “mistakes.” The costs of controlling

mistakes in different states potentially depend on both the identity of the states and the

endogenous outcomes predicted for those states via the weighting function λ(X, θ).

In the remainder of this subsection, we give four specific examples of state-separable

costs that capture ex post misoptimization, ex ante planning frictions, endogenous cognitive

constraints, and endogenous consideration sets. In the next subsection, we discuss how these

costs are consistent with empirical evidence on decision frictions.

Ex Post Misoptimization with Entropy Costs. As a first example, we consider a

case in which ϕ(p) = p log p and λ(X, θ) ≡ λ̄ > 0. These costs equal the expectation of the

negative entropy of the conditional action distributions. Expected entropy costs encode that

precise choice is costly and, therefore, that agents will ex post misoptimize. The expected

entropy cost model is often applied in macroeconomics to study ex post misoptimization

(e.g., Costain and Nakov, 2019; Macaulay, 2020; Flynn and Sastry, 2022). Expected entropy

costs imply optimal action distributions of the following “logit” form:

p(x|θ) =
exp
(
λ̄−1u(x, X̃(θ), θ)

)
∫
X exp

(
λ̄−1u(z, X̃(θ), θ)

)
dz

(3)

When the set of actions is discrete, these choice patterns are identical to those generated

in the model of McFadden (1973) in which agents perceive the perturbed utility function

ũ(x,X, θ) = u(x,X, θ) + εx, where εx is distributed type-I extreme value and IID across

agents and actions. This model is ubiquitous for modeling consumer demand in industrial

organization (see, e.g., Berry and Haile, 2021). The same model for choice is applied in game
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theory by McKelvey and Palfrey (1995) to define Quantal Response Equilibrium. However,

our entropy-cost case differs from what is studied in these references in two key ways. First,

actions in our model are continuous. Second, our model’s normative analysis is much differ-

ent. Control costs model the fact that avoiding mistakes has real costs, while random utility

treats random choices as ex post optimal.

Finally, Matějka and McKay (2015) show that logit choice can be obtained as a limit case

of a model of information acquisition with mutual information costs plus a restriction that

all actions are ex ante exchangeable. We revisit this last connection in Online Appendix B,

which studies the difference between our model and the mutual information model.

Prior-Dependence and Imperfect Ex Ante Planning. As a second example, consider

an arbitrary kernel, but now set λ(θ) = π(θ)−1λ̄. In this case, the agent’s cost functional is

given by:

c(P ) = λ̄
∑
Θ

∫
X
ϕ(p(x|θ)) dx (4)

This captures costly planning, where the agent plans for each state in advance, and then

implements these plans when states realize. Thus, costs of planning actions are incurred

ex ante, and are therefore proportional to the number of required plans (i.e., states con-

templated) and not their likelihood of occurring. Under the entropy kernel, this process

generates the following choice probabilities:

p(x|θ) =
exp
(
λ̄−1π(θ)u(x, X̃(θ), θ)

)
∫
X exp

(
λ̄−1π(θ)u(z, X̃(θ), θ)

)
dz

(5)

The agent optimally chooses to form better plans in states that they believe to be more

likely. Concretely, the agent trades off the benefits of precise planning in a state against the

cost that the state will not be realized and the plan will be useless. This allows us to capture

the idea that agents rationally may prepare for very rare events, even if actions during those

events are very important (an idea also proposed by Maćkowiak and Wiederholt, 2018).

In Section 4.1, we apply this model to study equilibrium price-setting by monopolistically

competitive firms in a monetary macroeconomic model.

Endogenous Cognitive Constraints. We next consider an example that sets λ(X, θ) =

λ̃(X), for some decreasing function of X. Combined with the normalization that u is mono-

tone in X, this embodies the possibility that more favorable aggregate outcomes decrease

decision costs while less favorable aggregate outcomes increase decision costs. A leading

example studied by Mani et al. (2013) and Mullainathan and Shafir (2013) is that poverty

impedes cognitive ability and induces mistakes in decisions. Our framework can model the
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possibility that this force is endogenous to others’ actions and/or mistakes, insofar as income

is determined in equilibrium. Under the entropy kernel, choice probabilities follow:

p(x|θ) =
exp
(
λ̃(X̃(θ))−1u(x, X̃(θ), θ)

)
∫
X exp

(
λ̃(X̃(θ))−1u(z, X̃(θ), θ)

)
dz

(6)

In states with low weights λ̃(X), when aggregate outcomes are good and stress is low, choices

are more precisely concentrated on high-payoff choices; in states with high weights λ̃(X),

when aggregate outcomes are bad and stress is high, the opposite is true. Thus, in both

cases, the characteristics of aggregate states and their psychological effects shape choice in

ways that are not summarized by physical payoffs. In Section 4.2, we study a macroeconomic

model in which endogenous stress shapes the determination of aggregate demand and income.

Consideration Sets with Quadratic Costs. We now consider the quadratic kernel

ϕ(p) = λ̄p2

2
studied by Rosenthal (1989). Like the entropy kernel, the quadratic kernel

penalizes action distributions that are more sharply peaked and rewards those that are more

thinly spread. Unlike the entropy kernel, the quadratic kernel allows for agents to put exactly

zero probability on certain actions. In the marketing literature, this phenomenon of agents

playing only a strict subset of possible actions is sometimes referred to as a “consideration

set” (e.g., Hauser and Wernerfelt, 1990). In the context of rational inattention models,

Jung et al. (2019), Caplin et al. (2019), and Fosgerau et al. (2020) study this phenomenon.

Stevens (2019) shows evidence of sparse price-setting choices in micro-data and argues that

these patterns are consistent with a model of mutual-information costs.

We now illustrate how consideration sets emerge. Choice probabilities follow:

p(x|θ) = 1

λ̄
(u(x, X̃(θ), θ)− ū(X̃(θ), θ)) · I[u(x, X̃(θ), θ) ≥ ū(X̃(θ), θ)] (7)

where I[·] is the indicator function and ū(X̃(θ), θ) is defined such that
∫
X p(x|θ) dx = 1. The

consideration set of actions in state θ is therefore given by:

X (θ, X̃) = {x ∈ X : u(x, X̃(θ), θ) ≥ ū(X̃(θ), θ)} (8)

If ū(X̃(θ), θ) > minX u(x, X̂(θ), θ), then a strictly positive (Lebesgue) measure of actions is

chosen with zero probability in state θ. In general, without further assumptions, this set

can contain many disjoint intervals. However, if u is quasiconcave in x, then X (θ; X̂) is a

closed interval. Finally, observe that these consideration sets are endogenous to equilibrium

outcomes as they depend on the equilibrium aggregate.
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More generally, away from the quadratic kernel, consideration sets can obtain when ϕ

does not satisfy an Inada condition, i.e, when limp→0 ϕ
′(p) > −∞.

2.3 Experimental Evidence and Comparisons to the Literature

Having illustrated the model’s capacity to generate a rich set of decision frictions, we now as-

sess the model’s ability to match experimental evidence. We compare and contrast this with

the ability of random utility and costly information acquisition models to do the same. We

organize this discussion around five key stylized facts that emerge from the classic literature

in experimental economics and experimental psychology surveyed by Woodford (2020), the

state-of-the-art perceptual study by Dean and Neligh (2022), and the cognitive experiments

of Mani et al. (2013). We show that specializations of the state-separable model can capture

combinations of these facts.

Fact 1: Choice is Random. People make inaccurate and random judgments in decision

problems. These imperfect random choices are often measured in experiments that ask

participants to pick which of two stimuli is larger (i.e., which noise is louder) and summarized

as psychometric functions that plot the probability of choosing the correct option against

objective differences in the stimuli that are varied across experiments. These typically reveal

a smooth, monotone relationship that is interior to (0, 1) (see e.g., Figure 1 of Woodford,

2020, and each of the experiments in Dean and Neligh, 2022). The state-separable, random

utility, and information acquisition models all rationalize random choice. The state-separable

model does so by making precise optimization costly.

Fact 2: Choice Responds to Incentives. People make more accurate and precise

choices when the payoffs from doing so are higher. In perceptual tasks, error rates de-

crease in rewards (see, e.g., Figure 2b of Woodford, 2020, and Experiment 2 in Dean and

Neligh, 2022). The state-separable and rational inattention model this as a rational response

to higher returns to cognitive effort; the random utility model generates a similar prediction

because larger payoff differences drown out fixed payoff noise.

Fact 3: Choice Depends on Prior Beliefs. People’s random choice responds to the

probabilities of states, in repeated experiments where it may be reasonable to interpret these

as prior beliefs. In repeated perceptual tasks, average error rates are lower in states that

recur more often (see, e.g., Figure 2a of Woodford, 2020, and Experiment 3 of Dean and

Neligh, 2022). This is consistent with state-separable costs that capture ex ante planning,

as agents have incentives to exert more effort to prepare for more likely states. This result is

also natural in many models of costly information acquisition. However, this result cannot be
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understood through the lens of random utility models (or, in games, QRE), as they embody

no notion of ex ante planning and agents’ priors are irrelevant.

Fact 4: Choice Depends on Decision Context. The accuracy and precision of choice

vary with the “context” of decision problems, such as the action space and the state space.

First, Dean and Neligh (2022) show the importance of the action space. In Experiment 1,

the authors first ask participants to pick between two options. The authors then introduce a

third choice (i.e., expand the action space). They find that this increases the probability of

one of the initial actions. This is consistent with state-separable costs exactly when different

action spaces affect the difficulty of making choices (modeled through a change in the value of

the weighting function). As observed by Dean and Neligh (2022), this is also consistent with

models of costly information acquisition, but inconsistent with models of random utility,

which predict that larger action spaces decrease the probabilities that all actions are played.

Second, three examples demonstrate the impact of changes in the state space. Experi-

ment 4 in Dean and Neligh (2022) shows that choice probabilities are more inaccurate when

participants are asked to distinguish states that look more similar. Woodford (2020) surveys

two related results in the psychometric literature. First, when laboratory participants are

asked to reproduce a set of unknown distances from memory, they overestimate the shorter

distances and underestimate the longer distances on average (Figure 4 of Woodford, 2020).

Second, the extent of bias can depend systematically on the scale of stimuli (Figure 5 of

Woodford, 2020). All of these results are consistent with the state-separable model where

the weighting function depends on the state space, capturing the idea that some problems

are easier to solve than others. These results are also consistent with information acquisi-

tion models that emphasize that the topology of the state space matters (e.g., Hébert and

Woodford, 2020). However, they are inconsistent with information acquisition models that

satisfy the Invariance Under Compression Axiom (Caplin et al., 2022), such as the canonical

mutual information cost proposed by Sims (2003).

Fact 5: Choice Depends on Decision-Irrelevant Context. The accuracy and preci-

sion of decisions can also depend on context that is not decision-relevant. For example, Mani

et al. (2013) show that performance on abstract cognitive tasks declines when individuals

are reminded of the difficulty of making financial decisions under poverty or, for predictable

reasons, have higher or lower income from a seasonal cycle. In each case, except for the

interaction with the (small) financial incentives, income could be viewed as irrelevant for the

decision problem solved.

As mentioned earlier, our state-separable model can embody this property directly via

appropriate specification of how the weighting function depends on endogenous states in a
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game (see Equation 6). This directly embodies the idea expressed in the title of the Mani

et al. (2013) that “Poverty Impedes Cognitive Function,” no matter what decision problem

agents are solving (i.e., what are their payoffs, action space, or state space).

A model of costly information acquisition has the flexibility to explain this sort of finding,

mathematically speaking. But this has an important caveat. The ability of this model to

generate more “mistakes” in a poverty state relies on the premise of imperfect observation

of income, or a heightened inability to determine income when it is low overall.3 But this

would be hard to square with the findings of Mani et al. (2013) in tasks for which income

is (almost) decision-irrelevant. More broadly, the notion that imprecise choice must arise

through imperfect learning places significant restrictions on how decision frictions vary across

contexts.

Summary. State-separable costs are consistent with Facts 1 to 5. Random utility models

can explain only Facts 1 and 2. All models of costly information acquisition can explain

Facts 1, 2, and 3; some models can be consistent with Fact 4 (but not mutual information);

but none could easily explain Fact 5. On the basis of this, we argue that state-separable

costs provide a flexible way of modeling a variety of decision frictions in a way that is

consistent with our best experimental evidence. An example “workhorse” model that could

capture all five facts is a model with the quadratic kernel ϕ(p) = p2

2
with weighting function

λ(θ) = π(θ)−1λ̃(X), for some decreasing function of X.

However, there are potentially testable implications of information acquisition models

which with state-separable costs would not be consistent. In particular, information acqui-

sition models make predictions for the joint properties of beliefs and actions. This notwith-

standing, it has been customary in the decision-theoretic literature to ignore these predic-

tions, and instead to focus entirely on predictions for choice, under the premise that internal

mental states are unobservable (e.g., Caplin and Dean, 2015; Caplin et al., 2022). More-

over, existing tests of information acquisition models derived from the analysis of Caplin and

Dean (2015) and Caplin and Martin (2015) and performed by Dean and Neligh (2022) are

one-sided: they reveal that information acquisition is consistent with the data, but not that

non-informational models are inconsistent with the data.

3Concretely, one could apply a variant of the Hébert and Woodford (2020) neighborhood-based cost or
the Pomatto et al. (2023) log-likelihood-ratio cost in which states corresponding to poverty are harder to
distinguish from others.
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3 Main Results

We now prove existence, uniqueness, efficiency, and equilibrium monotone comparative stat-

ics for both the aggregate and the cross-sectional action distribution. Our approach will be

to establish that the correct notion of a “best response function” for the aggregate action X

is a contraction map that satisfies certain properties.

3.1 Assumptions: Payoffs and Aggregator

We first identify conditions on payoffs, aggregators, and stochastic choice functionals suf-

ficient to guarantee uniqueness. For payoffs, we first require complementarities in the un-

derlying game in the form of supermodularity in cost-normalized payoffs between an agent’s

own action and the aggregate. Second, we require that these complementarities are not too

strong in the sense that payoffs are sufficiently concave to outweigh them:

Assumption 1 (Supermodularity and Sufficient Concavity). The payoff function u and

weighting function λ are such that the following holds for all x′ ≥ x,X ′ ≥ X, and θ:

u(x′, X ′, θ)− u(x,X ′, θ)

λ(X ′, θ)
≥ u(x′, X, θ)− u(x,X, θ)

λ(X, θ)
(9)

Moreover, for all α ∈ R+, x
′ ≥ x, X, and θ, the following holds:4

u(x′ − α,X, θ)− u(x− α,X, θ)

λ(X, θ)
≥ u(x′, X + α, θ)− u(x,X + α, θ)

λ(X + α, θ)
(10)

Informally, the former part of the assumption ensures that when aggregate actions go

up, agents have an incentive to increase their own action. The latter part of the assumption

ensures that agents’ actions are less than one-for-one sensitive to the aggregate.

To gain a stronger intuition for the role of this assumption, and to provide easily verifiable

conditions under which it holds, we characterize it with twice continuously differentiable

payoffs u and weighting functions λ:

Lemma 1. When u(·, θ) is twice continuously differentiable in (x,X) and λ(·, θ) is twice

continuously differentiable in X for all θ, Assumption 1 is equivalent to the following:

0 ≤ uxX(x,X, θ)− ux(x,X, θ)
λX(X, θ)

λ(X, θ)
≤ −uxx(x,X, θ) (11)

for all x, X and θ.
4In stating this assumption, we are implicitly extending the domain of u so that it is well-defined under

such translations.
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Proof. See Appendix A.1.

When cognitive constraints are exogenous, this condition reduces to the requirement

that 0 ≤ uxX ≤ −uxx, which is a standard condition for unique equilibrium in supermodular

games (see e.g., Weinstein and Yildiz, 2007). Intuitively, this condition requires that the

slope of agents’ optimal actions to changes in aggregate actions are bounded between zero

and one.

When cognitive costs are endogenous, strategic complementarity now has both a physi-

cal payoff complementarities component uxX and a cognitive complementarities component

−ux
λX

λ
. To understand why cognitive complementarities take this form, suppose that ag-

gregate actions increase and this raises cognitive costs by λX

λ
percent. This gives the agent

an incentive to spread out their actions around any locally optimal action. If the agent is

playing an action greater than any locally optimal action, their marginal utility from in-

creasing their own action is negative (ux < 0). However, as cognitive costs have gone up, the

agent is now more willing to accept such a negative marginal payoff, and so has incentives to

further increase the likelihood that their action lies further from the locally optimal point.

Thus, when ux is negative, when cognitive costs increase, the agent has an incentive to play

higher actions and there is strategic complementarity, i.e., −ux
λX

λ
> 0. When ux is positive,

the reverse logic is true, and increased cognitive costs make actions strategic substitutes.

Thus, with cognitive strategic externalities, we require that (i) any strategic substitutabil-

ity through cognitive costs never outweighs strategic complementarities in physical payoffs,

and (ii) agents’ payoff functions are sufficiently concave to outweigh both physical payoff

complementarities and cognitive complementarities.

Having identified conditions on payoffs, we now turn to the aggregator. To retain the

ordering between actions and aggregates, we assume that the aggregator is monotone in the

sense of first-order stochastic dominance. We further assume that the aggregator satisfies

discounting, which is to say that it is sub-linear in level shifts of the cross-sectional action

distribution (see Cerreia-Vioglio et al., 2020, for a discussion of monotone and (sub-)linear

aggregators):

Assumption 2 (Monotone and Discounted Aggregator). For all g, g′ ∈ ∆(X ):

g′ ⪰FOSD g =⇒ X(g′) ≥ X(g) (12)

Moreover, there exists β ∈ (0, 1) such that for any distribution g ∈ ∆(X ) and any α ∈ R+:

X({g(x− α)}x∈X ) ≤ X({g(x)}x∈X ) + βα (13)
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We moreover, note that the assumption that β < 1 can be relaxed to allow β = 1 if

the second inequality in Assumption 1 (Equation 10) is made strict. In the interests of

concreteness, the following Lemma (the proof of which is immediate, and therefore omitted)

provides several important and natural aggregator functions that satisfy Assumption 2.

Lemma 2. The following aggregators satisfy Assumption 2:

1. Linear aggregators:

X(g) = β

∫
X
f(x)g(x) dx (14)

where β ∈ [0, 1) is a parameter controlling discounting and f : X → R is a differentiable

function such that f ′ ∈ [0, 1].

2. Quantile aggregators:

X(g) = βG−1(l) (15)

where β ∈ [0, 1) is a parameter controlling discounting, G(x) =
∫ x

x
g(x̃) dx̃ is the CDF

of the cross-sectional action distribution, G−1 is its left-inverse, and l ∈ (0, 1).

Linear aggregators with polynomial kernels f(x) = a0 + a1x + . . . + alx
l (subject to the

monotonicity and discounting constraints that f ′(x) ∈ [0, 1] on [x, x]) allow the aggregator to

depend on all moments of the cross-sectional distribution of actions. The mean aggregator,

X(g) = β
∫
X xg(x) dx, is a special case of this class when l = 1. Thus, our analysis nests

the common assumption in macroeconomics that interactions take place through the mean

action (see Angeletos and Lian, 2016, for a review). Moreover, the polynomial sub-class

allows for higher moments of the action distribution to enter agents’ payoffs. This allows the

dispersion l = 2, skewness l = 3, and kurtosis l = 4 of other agents’ actions to matter for

agents’ strategic incentives. Such aggregators also have natural macroeconomic applications.

For example, in Flynn and Sastry (2022), the fact that dispersion reduces aggregate outcomes

generates important general equilibrium forces. Quantile aggregators include the median

when l = 1
2
. Such aggregators are relevant when agents care about what an average agent

does, rather than what other agents do on average.

Assumption 2 rules out aggregators that do not preserve the monotonicity of actions, e.g.,

linear aggregators with a negative slope, or those that are more than one-for-one sensitive

to translations of actions, e.g, linear aggregators with a slope greater than one. Intuitively,

such aggregators break either strategic complementarity or sufficient concavity.
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3.2 Intermediate Result: Properties of Stochastic Choice

Assumption 2 suggests a path toward ensuring that equilibrium is described by a contrac-

tion map if, in response to level shifts in the aggregate, the optimal stochastic choice pat-

tern increases in the sense of first-order stochastic dominance (monotonicity) but remains

dominated by the level shift itself (discounting). These are intuitive properties given the

supermodularity and concavity of payoffs, which encode that level shifts in the (conjec-

tured) aggregate globally increase the attractiveness of playing higher x, but in a way that

is less than one-for-one. We now show an interpretable sufficient condition within the state-

separable class which guarantees that monotonicity and discounting translate appropriately

to stochastic choice.

We first define a new property of a function that we label quasi-monotone-likelihood-ratio-

property (quasi-MLRP). This condition allows us to relate the underlying cost functional to

the distribution of actions induced by optimality.

Definition 3 (Quasi-MLRP). A function f : R+ → R satisfies quasi-MLRP if for any two

distributions g′, g ∈ ∆(X ):(
f(g′(x′))− f(g′(x)) ≥ f(g(x′))− f(g(x)) ∀x′ ≥ x

)
=⇒ g′ ⪰FOSD g (16)

With this definition in hand, we can now state our final technical assumption on stochastic

choice functionals, which ensures that we can always translate dominance in payoff units to

dominance in terms of distributions:

Assumption 3 (Quasi-MLRP Kernel). Costs have a differentiable kernel ϕ such that ϕ′

satisfies quasi-MLRP.

It is important to note that the two workhouse kernels in the literature on control costs

satisfy this assumption:

Lemma 3. The entropy kernel ϕ(p) = p log p and the quadratic kernel ϕ(p) = 1
2
p2 satisfy

Assumption 3.

Proof. See Appendix A.2.

We can now state a Lemma using this assumption and our earlier assumptions on payoffs

to establish monotonicity and discounting of the solution of the stochastic choice problem:

Proposition 1 (Monotone and Discounted Stochastic Choice). Consider the stochastic

choice program with payoffs satisfying Assumption 1 and cost functional satisfying Assump-

tion 3. Then,
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1. The optimal stochastic choice rule p∗ is weakly increasing in the sense that if X̂ ′ ≥ X̂

then p∗(θ; X̂ ′) ⪰FOSD p∗(θ; X̂) for all θ ∈ Θ.

2. The optimal choice profile is discounted in the sense that when X̂ and X̂ ′ = X̂ +α for

α ∈ R+, we have that p∗−α(θ; X̂) ⪰FOSD p∗(θ; X̂ ′) for all θ ∈ Θ, where p∗−α denotes the

translation of p∗ to the right by α.

Proof. See Appendix A.3.

The key to both parts is that quasi-MLRP allows us to “invert” dominance relation-

ships in payoffs to obtain dominance relationships between distributions. For the first part,

we show that the dominance of payoffs for playing higher x from supermodularity implies

dominance of distributions under quasi-MLRP. For the second part, we use the property off

payoffs from (10) that concavity of utility exceeds strategic complementarity, to show the

optimal stochastic choice rule is dominated by the claimed level shift in the rule.

Proposition 1 is the core of our environment’s tractability. It is in principle the ingredient

that might be replaced in an alternative model of stochastic choice, like a form of unrestricted

information acquisition. But, to our knowledge, such monotonicity and discounting results

do not exist for any form of information acquisition in general environments. Moreover, this

is not merely a technical glitch. A very relevant mechanism, anchoring toward frequently

played actions, fights such monotonicity and discounting in information acquisition models.

In a numerical example with the mutual-information cost (Sims, 2003) in Appendix B, we

show that violations of monotonicity and discounting obtain in the single-agent problem and

how this leads to non-uniqueness and non-monotone comparative statics in the equilibrium

of an example game.

3.3 Existence and Uniqueness

We can now state our main existence and uniqueness result:

Theorem 1 (Existence, Uniqueness, and Symmetry). Under Assumptions 1, 2 and 3, there

exists a unique equilibrium. The unique equilibrium is symmetric.

Proof. See Appendix A.4.

As alluded to above, we show this result by defining an equilibrium operator that maps

the law of motion of the aggregate in the state to the resulting optimal stochastic choice rule

and then maps this back to a law of motion of the aggregate, and then determining that
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said operator is a contraction map. More formally, let B = {X̂|X̂ : Θ → R} be a space of

(bounded) functions endowed with the sup norm. We define the operator T : B → B:

TX̂ = X ◦ p∗(X̂) (17)

To show uniqueness of the equilibrium law of motion of aggregates, it then suffices to prove

that T is a contraction map. We prove this by showing that, under the given assumptions,

T satisfies both of Blackwell’s conditions of monotonicity and discounting. Given the unique

equilibrium-consistent law of motion which satisfies TX̂ = X̂, the equilibrium stochastic

choice rule is then the unique solution of the stochastic choice problem given that law of

motion, or p∗(X̂). This extends classic uniqueness results to the realm of stochastic choice.5

3.4 Monotone Comparative Statics

Once we lie in the realm of unique equilibria, it is well-posed to consider comparative statics

in equilibrium. We provide two such results, showing when the action distribution and

aggregate action are monotone in the state and when the precision of agents’ actions is

monotone in the state.

3.4.1 Monotonicity of Action Distributions

To show monotonicity of distributions and aggregates, we require a stronger supermodularity

assumption that not only are individual actions and aggregate actions complements, but so

too is the underlying state itself a complement to both individual actions and aggregates in

cost-adjusted payoffs:

Assumption 4. The payoff function u and weighting function λ are such that the following

holds for all θ′ ≥ θ,X ′ ≥ X, x′ ≥ x:

u(x′, X ′, θ′)− u(x,X ′, θ′)

λ(X ′, θ′)
≥ u(x′, X, θ)− u(x,X, θ)

λ(X, θ)
(18)

As before, to gain a stronger intuition and provide an easily verifiable condition, we

characterize this assumption when u and λ are twice continuously differentiable:

5One could dispense with Assumptions 1, 2, and 3 and prove existence in our setting only by applying
the Schauder fixed-point theorem. We omit this result as it is simple, and because our analysis will proceed
afterward under Assumptions 1, 2, and 3.
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Lemma 4. When u is twice continuously differentiable in (x,X, θ) and λ is twice continu-

ously differentiable in (X, θ), Assumption 4 is equivalent to

uxX(x,X, θ)− ux(x,X, θ)
λX(X, θ)

λ(X, θ)
≥ 0 and uxθ(x,X, θ)− ux(x,X, θ)

λθ(X, θ)

λ(X, θ)
≥ 0 (19)

for all x, X and θ.

The proof follows from the same steps as in the proof of Lemma 1, simply relabelling X

as θ, and is therefore omitted. The first inequality (“complementarity with X”) is identical

to that in Lemma 1, and the second is its mirror image for “complementarity with θ”. When

cognitive costs do not depend on exogenous states λθ = 0, this second condition reduces to

uxθ ≥ 0. When cognitive costs depend on exogenous states, the intuition for the additional

term echoes the discussion of complementarity with X. The presence of this additional term

underscores the fact that state-varying control costs affect agents’ incentives to shift their

entire distribution of stochastic choice upward in higher states.

Under this assumption, we show the following result:

Theorem 2 (Monotone Actions and Aggregates). Under Assumptions 1, 2, 3, and 4, the

unique equilibrium action distribution is monotone increasing in the sense of FOSD and the

law of motion of the aggregate is increasing in the underlying state.

Proof. See Appendix A.5.

The intuition for this result is simple: higher θ makes higher actions more desirable so

that the distribution of actions in higher states dominates the distribution in lower states.

This is complicated by the fact that agents may face higher cognitive costs in higher states.

Hence, the relevant notion of complementarity is complementarity in cost-adjusted payoffs.

The proof strategy makes use of the contraction mapping property used in the uniqueness

proof. In particular, it shows that monotonicity is preserved by the fixed point operator and

therefore that the fixed point must itself be monotone.

This result has the following immediate implication for the supports of action distribu-

tions:

Corollary 1 (Monotone Consideration Sets). Under the conditions of Theorem 2, in the

unique equilibrim agents’ consideration sets X (θ) = clX{x ∈ X : p∗(x|θ, X̂(θ)) > 0} are

increasing in the strong set order.6

6Where clXA denotes the closure of set A within X .
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As optimal distributions increase in the sense of first-order stochastic dominance, the

supports must move in the sense of the strong set order. The result is vacuous if the cost

kernel satisfies an Inada condition and X (θ) = X for all θ. The result has bite if agents,

for example, have costs with the quadratic kernel, which does not satisfy an Inada condition

and may result in agents’ optimally playing only a subset of available actions. In this case,

the result puts structure on the endogeneity of consideration sets—agents consider larger

actions in higher states in equilibrium.

3.4.2 Monotonicity of Action Precision

We now turn to establish when the precision of, or extent of mistakes in, agents’ actions is

monotone in the state in equilibrium. To this end, in our context with flexible stochastic

choice, we first need a non-parametric notion of precision:

Definition 4 (Precision). Fix an h : R → R. A symmetric distribution g is more precise

about a point x∗ than g′ about x∗′ under h if h ◦ g(|x − x∗|) is faster decreasing in |x − x∗|
than is h ◦ g′(|x′ − x∗′|) in |x′ − x∗′ |.7

Informally, this definition requires that a distribution is more precise than another if

its density is more rapidly decreasing away from the point about which precision is being

considered. This definition generalizes the property that Gaussian distributions are more

precise about their mean when they have a lower standard deviation to cases with non-

Gaussian densities by exactly capturing the idea that a distribution is more precise if its

tails decay faster from the point about which a distribution is centered.8

Having defined precision, we now state sufficient assumptions on payoffs for precision to

be monotone. To show this result, we specialize to a distance-based payoff environment,

which we refer to throughout as generalized beauty contest payoffs:

7On an asymmetric support, we call a distribution g symmetric if g(x) = g(−x) whenever both g(x) and

g(−x) are defined. For any symmetric functions ξ, ξ̂ : A → R, we say that ξ is faster decreasing than ξ̂ in

their arguments if ξ(0)− ξ(|x|) ≥ ξ̂(0)− ξ̂(|x|) for all x ∈ A.
8To see this, recall that a Gaussian random variable with mean µ and standard deviation σ has pdf:

g(x) =
1√
2πσ2

exp

{
−1

2

(
x− µ

σ

)2
}

(20)

Thus, for two Gaussian distributions with means µ, µ′ and standard deviations σ, σ′ such that σ < σ′, we
have that h ◦ g(|x − µ|) is faster decreasing than h ◦ g′(|x − µ′|) whenever h is monotone. Thus, under
monotone h, we have that Gaussian distributions with lower standard deviations are more precise about
their mean under our definition of precision.
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Assumption 5 (Generalized Beauty Contests). The utility function is given by:

u(x,X, θ) = α(X, θ)− β(X, θ)Γ(|x− γ(X, θ)|) (21)

where Γ is monotone increasing and such that Γ(0) = 0, γ(X, θ) is monotonically increasing

in (X, θ), and β(X, θ) is positive, for every (X, θ).

Under distance-based payoffs with distance function Γ, an agent cares only about how

far their action is from an optimal action conditional on others’ play X and the state θ,

γ(X, θ). The extent to which they care is governed by β(X, θ), with larger values inducing

greater losses from failing to match the optimal action.

We note that this formulation nests the quadratic payoff functions, which can be jus-

tified via a second-order approximation of any smooth, concave utility function around its

maximum value γ(X, θ):

Lemma 5. Consider a payoff function u : X × R × Θ that is twice differentiable, strictly

concave in its first argument, and maximized for every (X, θ) ∈ R × Θ at some x∗(X, θ) ∈
X . Then, up to a term that is on the order of |x − x∗(X, θ)|3, payoffs conditional on

each (X, θ) take the form of Equation 21 with α(X, θ) = u(x∗(X, θ), X, θ), β(X, θ) =
1
2
|uxx(x

∗(X, θ), X, θ)|, γ(X, θ) = x∗(X, θ), and Γ(x) = x2.

This result follows immediately from taking a Taylor expansion of u around its optimal

value in each state, observing that the first-order term is zero because of the first-order

condition for optimality, and using Taylor’s Theorem to describe the residual error. In this

interpretation, γ(X, θ) is the optimal action conditional on (X, θ) and β(X, θ) measures the

curvature of payoffs, or second-order loss of mis-optimization, around that point.

We now state the result, which encapsulates the idea that precision is higher when the

losses from mis-optimization are higher for endogenous or exogenous reasons:

Theorem 3 (Monotone Precision). Under Assumptions 1, 2, 3, 4, and 5, p∗(θ) ∈ ∆(X ) is

more precise about γ(X̂(θ), θ) than p∗(θ′) about γ(X̂(θ′), θ′) under ϕ′

1. For any θ ≤ θ′ if β(X,θ)
λ(X,θ)

is monotone decreasing in both arguments.

2. For any θ ≥ θ′ if β(X,θ)
λ(X,θ)

is monotone increasing in both arguments.

Proof. See Appendix A.6.

The proof of this result shows that the agents’ incentives to transfer probability mass

from the ideal point γ(X̂(θ), θ) to any other x ∈ X are strictly lower when β(X,θ)
λ(X,θ)

is larger,
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which translates directly to our notion of precision. Note that this combines the incentives

for precision from the curvature in the utility function, β, and from the scaling of the

cost function, λ. This calculation relies on the symmetry of distance-based payoffs around

γ(X̂(θ), θ). It then leverages the fact that X̂ is monotone in θ in equilibrium, because of

Theorem 2, which in turn implies monotonicity of the mapping θ 7→ β(X̂(θ),θ)

λ(X̂(θ),θ)
, decreasing in

case 1 and increasing in case 2. Put differently, the “endogenous” and “exogenous” stakes

of making good choices both move in the same direction in equilibrium. Thus, precision is

monotone in the state.9

This result has the following immediate implication for the size of agents’ equilibrium

consideration sets:

Corollary 2 (Monotone Size of Consideration Sets). Under the conditions of Theorem 3, if

1. (resp. 2.) holds, then the Lebesgue measure of X (θ) is increasing (resp. decreasing) in θ.

Thus, as is intuitive, in states where agents’ cost-adjusted states are higher, agents choose

from smaller consideration sets.

3.5 Efficiency

A further question of interest is when equilibria of our model are efficient. As our agents are

symmetric, ex-ante Pareto efficiency and utilitarian efficiency are equivalent. We therefore

say that a stochastic choice rule is efficient if it maximizes utilitarian welfare:

Definition 5. A stochastic choice rule PE ∈ P is efficient if it solves the following program:

PE ∈ argmax
P∈P

∑
Θ

∫
X
u (x,X(P (θ)), θ) dP (x|θ) π(θ)− c(P,X(P )) (22)

An efficient stochastic choice rule both fully internalizes the effect choices have on aggre-

gates and the costs of stochastic choice. Moreover, this notion of efficiency takes seriously

that agents do incur the cognitive cost of constraining their mistakes. We now ask, when

will equilibrium be efficient? The following result relates the answer to this question to the

balancing of aggregate externalities in physical and payoffs. To derive a variational necessary

condition, we make technical assumptions sufficient to guarantee differentiability:

Assumption 6 (Regularity Conditions for Efficient Program). Suppose that the planner’s

objective in Equation 22 is strictly concave in P , u is differentiable in its second argument

9Unsurprisingly, we cannot state a general result when β(X,θ)
λ(X,θ) is not strictly monotone in its two arguments;

but we could of course still use part of the previous argument to compare precision in any two states
(θ, X̂(θ)),(θ′, X̂(θ′)) after solving for equilibrium.
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X, λ is differentiable in its first argument X, and the aggregator is linear:

X(g) =

∫
X
f(x) dG(x) (23)

for some nowhere-constant function f .

Theorem 4. Under Assumption 6, a necessary condition for efficiency of an equilibrium

stochastic choice rule p∗ is that:∫
X
uX(x̃, X(p∗(θ)), θ)p∗(x̃|θ) dx̃ = λX(X(p∗(θ)), θ)

∫
X
ϕ(p∗(x̃|θ)) dx̃ (24)

for all θ ∈ Θ.

Proof. See Appendix A.7.

To understand this result, we first consider the case in which there are no payoff exter-

nalities in costs or λX = 0. In this case, the condition requires that the average externality

of increasing the aggregate is zero. This condition is evaluated at the equilibrium stochastic

choice pattern, but does not depend directly on the structure of cognitive costs. Thus, to

evaluate such a condition (under the assumption that λX = 0), an observer needs only to

know about payoff externalities and the observed distribution of choices.

We next consider the case in which λX ̸= 0. In this case, efficiency obtains when the

aforementioned payoff externality balances with a cognitive externality, to use the language

of Angeletos and Sastry (2023), operating directly through costs. Consider our recurring

example of cognitive costs that decrease with the value of X because of poverty-induced

stress (λX < 0) and assume that the utility costs of cognition are positive in all states.10

The cognitive externality is that increasing X directly decreases every agent’s cognitive cost.

A non-paternalistic planner, who takes cognitive costs into account, considers also this ex-

ternality. Thus, an optimal allocation (if it exists) tolerates a negative marginal payoff

externality to achieve a positive marginal cognitive externality. We return to this specific

point in a concrete example in Section 4.2 and Corollary 4.

Relative to the literature, our analysis therefore identifies a new channel through which

rational decision frictions can create equilibrium externalities and induce inefficiency. This

10Note, of course, that in our model these costs need not be positive. The following more perverse model
would also be consistent with empirical evidence that scarcity reduces decision quality (e.g., Mani et al.,
2013): low X increases the scale of cognitive costs, reducing relative incentives for precise optimization,
but has a positive level effect on welfare. In this case, our intuition for why there is a role of cognitive
externalities would be the same, and Theorem 4 would still hold; but the intuition for the sign of effects
would flip.
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supplements the findings of Hébert and La’O (2022) for aggregative games with information

acquisition and Angeletos and Sastry (2023) for Arrow-Debreu economies with informa-

tion acquisition. Relative to the related results in those papers, our Theorem 4 has three

substantial differences. First, it clarifies how cognitive externalities can operate outside

of information acquisition models. Second, it sheds light on the nature of inefficiency—in

particular, the direction in which a social planner would want to perturb aggregates—in

inefficient equilibrium. By contrast, due to the intractable structure of general cognitive

externalities in information-acquisition models, Hébert and La’O (2022) and Angeletos and

Sastry (2023) can say relatively little about the same in their settings. Third, leveraging

our state-separable structure, it provides a testable condition to compare the extent of these

externalities with “standard” payoff externalities to gauge efficiency.

4 Applications

We now apply our model to make equilibrium predictions in two macroeconomic settings.

We first study price-setting by monopolistic firms, a cornerstone of the “supply block” of

modern macroeconomic models. In our model, firms imperfectly price their goods because of

ex ante planning frictions. We show how to make equilibrium predictions for the aggregate

price level and price dispersion that take into account the aggregate consequences of “pricing

mistakes” and firms’ differential incentives to rein in these mistakes in different aggregate

states. We next study consumption and savings decisions in a liquidity trap, a cornerstone

of the “demand block” of modern macroeconomic models. In our model, consumption plans

are imperfect because of costly control. Moreover, these costs increase when households

have low income, capturing the possibility that psychological stress impairs decisionmaking

in these states. We show how to make predictions for aggregate income and consumption

inequality and characterize a novel equilibrium externality that arises because one agent’s

lack of consumption increases others’ costly stress.

4.1 Price-Setting with Planning Frictions

Set-up. Each agent i ∈ [0, 1] is a firm that produces a differentiated variety in quantity qi

at price pi ∈ [p, p] with p > 0. These firms use intermediate goods zi, with marginal cost

k, to produce according to the production technology qi = zi. The outputs of these firms

are consumed by a representative household, with constant elasticity of substitution (CES)

consumption bundle:

C =

(∫ 1

0

q
η−1
η

i di

) η
η−1

(25)
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where η > 1. As is standard (see e.g., Hellwig and Venkateswaran, 2009), the household’s

preferences over consumption and real money balances M
P

are given by:

V

(
C,

M

P

)
=

C1−σ

1− σ
+ ln

M

P
(26)

where σ ≥ 0. The money supply is an exogenous shock in the discrete set M with minimal

and maximal elements M and M , such that M > p and M < p. Moreover, we make

the standard simplifying assumption (Alves et al., 2020; Flynn and Sastry, 2022) that real

marginal costs are a log-linear function of aggregate output:

k

P
= Cχ (27)

where χ > 0 represents “factor price pressure”, i.e., the extent to which real marginal costs

are increasing in the level of output in the economy.

To study how planning frictions matter, we subject the firm to a state-separable cost

function with any kernel satisfying Assumption 3 (e.g., the entropy kernel ϕ(p) = p log p)

and a weighting function inversely proportional to how likely the firm thinks each realization

of the money supply π(M) is, i.e., λ(M) = 1
π(M)

. This captures a situation in which firms

must plan for contingencies (realizations of the money supply) in advance and then implement

these plans when the state is realized. This premise is shared by the analysis of Maćkowiak

and Wiederholt (2018), who also study ex ante planning with mutual information costs.

However, our analysis differs in the specific monetary business-cycle model that we study,

the cost functions we consider, our analysis of general-equilibrium implications, and our

predictions for the price distribution. Moreover, we assume that π(M) ∝ M δ, where δ > 0

corresponds to high money supply states being more likely and δ < 0 means that low money

supply states are more likely.

Recasting the Economy as a Game. Given the CES aggregator, the firm faces an

isoelastic demand curve:

qi =
(pi
P

)−η

C (28)

where P is the ideal price index under CES production:

P =

(∫ 1

0

p1−η
i di

) 1
1−η

(29)
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The firms’ profits are moreover priced according to the real stochastic discount factor (the

household’s marginal utility from consumption) C−σ. Thus, the firm’s objective function is:

π(pi, P, C, θ) = C−σ pi − k

P

(pi
P

)−η

C = C1−σP η−1(pi − k)p−η
i (30)

Substituting in the equilibrium conditions that k = PCχ (factor supply) and C =
(
M
P

) 1
σ

(money demand), we obtain that the firm’s payoff function is:

u(pi, P,M) = M
1−σ
σ P η− 1

σ

(
pi −M

χ
σP 1−χ

σ

)
p−η
i (31)

To apply all of our results, we perform the standard approximation (as per Lemma 5) of the

firm’s objective function to second-order around the optimal price in each state. This yields

the payoff function:

u(pi, P,M) = α(P,M)− β(P,M)(pi − γ(P,M))2 (32)

where:

α(P,M) =
1

η − 1

(
η

η − 1

)−η

M
1−σ+χ(1−η)

σ P η− 1
σ
+(1−η)(1−χ

σ
)

β(P,M) =
η

2

(
η

η − 1

)−(η+2)

M
1−σ−χ(η+1)

σ P (η+1)χ
σ
− 1

σ
−1

γ(P,M) =
η

η − 1
M

χ
σP 1−χ

σ

(33)

and we impose that this game has complementarity in optimal actions by assuming factor

price pressure is weaker than income effects in money demand, or χ < σ. Finally, as is also

standard, we approximate the aggregator to first order as:

P =

∫ 1

0

pi di (34)

which simply says that the aggregate price level is the average price set by firms.

Results and Interpretation. To build intuition, we first characterize equilibrium in this

model in the absence of ex ante planning frictions. In this case, the optimal price that a

firm sets is given by:

p =
η

η − 1
M

χ
σP 1−χ

σ (35)

26



which is a constant markup over marginal cost. Thus, we observe that there is a unique

equilibrium in which all firms set the same price (there is no price dispersion) and the

aggregate price level is given by:

P =
η

η − 1
M (36)

In this equilibrium, the elasticity of prices to the money supply is one, i.e., a 1% increase in

the money supply leads to a 1% increase in the price level.

We now apply our general results to this economy when firms face ex ante planning

frictions. Specifically, we ask when this price-setting economy has a unique equilibrium,

when the aggregate price level is increasing in money, when the distribution of prices is

increasing (in the sense of FOSD) in money, and when the dispersion in prices is highest

when inflation is high.

Corollary 3. There is a unique equilibrium if, for all p, P ∈ [p, p] and M ∈ M:

−
(

P

γ(P,M)
(
1− χ

σ

) − 1

)
<

−1− 1
σ
+ (η + 1)χ

σ(
1− χ

σ

) (
p

γ(P,M)
− 1

)
< 1 (37)

The unique aggregate price level and distribution of prices are both increasing in the money

supply if, in addition:

1− σ − χ(η + 1) + δσ

χ

(
p

γ(P,M)
− 1

)
< 1 (38)

Moreover, price precision is decreasing in the money supply and the price level if, in addition:

χ(η + 1) ∈ (1 + σ(δ − 1), 1 + σ) (39)

Proof. See Appendix A.9.

To understand this result, we go through each condition in turn. The uniqueness con-

dition (Equation 37) comprises two inequalities. The inequality on the right ensures that

the game is one of complementarities. The inequality on the left ensures that utility has

sufficient concavity relative to complementarity. In the special case where the losses from

mispricing do not depend on the aggregate price level ((1+η)χ
σ
− 1

σ
−1 = 0), the middle term

is equal to zero and the complementarity condition always holds. This is because we have

assumed that factor price pressure is weaker than income effects (χ < σ), which makes the

optimal price increase in the aggregate price. When the losses from mispricing are instead

endogenous ((1 + η)χ
σ
− 1

σ
− 1 ̸= 0), there is a new effect that must be accounted for. Intu-

itively, suppose without loss of generality that an agent is setting a price that is less than
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the optimal price and an increase in the aggregate price level increases (decreases) the losses

from mispricing, then the agent now has a greater (lesser) incentive to reduce the magnitude

of this mistake and increase (decrease) their price. In the former case, this endogeneity of the

costs of mispricing induces greater strategic complementarity. In the latter case, it induces

strategic substitutability. The exact inequality we derive disciplines the magnitudes of these

effects in a verifiable way that ensures that strategic complementarity always obtains.

The sufficient concavity condition similarly has a “simple” and “complex” interpretation.

When the losses from mispricing are exogenous, the condition requires that the optimal price

has a slope less than one in the aggregate price level. This condition that “best responses

have a slope less than one” is familiar from games without decision frictions. More generally,

when the aggregate price matters for the losses from mispricing, the “slope” that needs to

be bounded depends directly on the deviation of the price from the optimal price and the

considerations described above.

The monotonicity condition (Equation 38) requires that higher levels of the money supply

are complementary with higher prices for firms. When the losses from mispricing do not

depend on the money supply 1−σ−χ(η+1)
σ

+ δ = 0, this condition always holds as factor price

pressure from higher money supply (which increases demand, which increases production,

which increases marginal costs) makes optimal prices higher. More generally, as above for

the endogenous price level, the monotonicity condition ensures complementarity between

pricing and the exogenous money supply when the losses from mispricing depend on the

money supply.

Finally, the condition for monotone precision (Equation 39) conveys, in terms of deep

parameters, when price-setters optimally respond to lower money and prices by making more

precise decisions. To understand this, it is useful to first turn off factor price pressure or set

χ = 0. In this case, the condition corresponds to δ+
(
1
σ
− 1
)
< 0. The first term isolates the

role of costly planning—when high-money states are less likely (δ < 0), firms optimally put

in less effort to plan for them, and their pricing decisions in these states are less precise. The

second term conveys the roles of aggregate demand externalities, which have elasticity 1/σ

with respect to the money supply, and the stochastic discount factor, which has elasticity

−1 with respect to the money supply. The demand externality pushes toward high precision

in high-demand states, because any price mistake leads to more lost sales. The stochastic

discount factor pushes toward high precision in low-demand states, since profits are more

valuable in these states (Flynn and Sastry, 2022). Finally, when factor price pressures are

re-introduced, they loosen the constraint corresponding to incentives from the money supply

and tighten the constraint corresponding to incentives from aggregate prices.
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Economic Lessons. Our finding can be used to rationalize empirical findings on the

cyclicality of price dispersion. Empirically, Alvarez et al. (2019) find that price dispersion

among firms in Argentina has an elasticity of about 1/3 to the inflation rate in high-inflation

periods (e.g., an annual rate above 50%) and an elasticity that is positive, but close to zero,

in low-inflation periods. Nakamura et al. (2018) find limited evidence that the dispersion of

US prices increased in the “Great Inflation” of the 1970s and 1980s, during which annual

US inflation was regularly between 5% and 10%. This evidence is consistent with the costly

planning mechanism, if firms believe that hyperinflation states (in Argentina and in the US)

are relatively unlikely (δ < 0) and are far in the tail of the distribution for M . Intuitively,

this allows the possibility that price dispersion is especially high in hyperinflations precisely

because firms have not precisely formulated plans for these unlikely states. This prediction

would not be obtained in standard analysis of this model with a state-invariant decision

friction, like exogenous information (Hellwig and Venkateswaran, 2009).

Moreover, empirical evidence from Brunnermeier et al. (2022) regarding the German

hyperinflation of the 1920s demonstrates both firms’ unpreparedness and the concrete or-

ganizational difficulties and “mistakes” that resulted from this. First, Brunnermeier et al.

(2022) show how markets retained low inflation expectations until the Summer of 1922.

This is despite the fact that inflation had been abnormally high since 1919. Thus, over this

three-year window, people seem to remain persistently incorrect regarding inflation. Second,

Brunnermeier et al. (2022) provide an historical account of how the rare, highly inflationary

state led to acute organizational difficulties in making decisions because of a lack of pre-

paredness. Indeed, a system for “inflation accounting” did not exist at that time and this

led firms to even make mistakes in constructing their own balance sheets. Brunnermeier

et al. (2022) write that: “For example, the 1923 financial report of Darmstadter und Na-

tionalbank stated that ‘the figures in our balance sheet and profit-and-loss statement are,

as in those of all German companies, unfit for any serious scrutiny, and to examine them in

detail is folly.’ Similarly, Hoffmann and Walker (2020) provide examples of firms noting that

the calculation of balance sheets and income in paper marks ‘lost its economic meaning’ and

that firms only reported financial statements out of legal obligation.”

4.2 Consumption and Savings with a Stress Externality

Set-up. Each agent is a consumer that lives for infinite periods, indexed by t ∈ N. They

choose consumption levels cit ∈ R and labor levels nit ∈ R and have quadratic payoffs. They
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maximize expected discounted utility:

U({cit, nit}∞t=0, θd) = (1 + θd)cit −
c2it
2

− χ
n2
it

2
+

∞∑
t=1

δt
(
cit −

c2it
2

− χ
n2
it

2

)
(40)

where δ ∈ (0, 1) is a discount factor, χ is a parameter controlling the labor-leisure trade-off,

and θd is a demand shock in a discrete set Θd, with maximum element θd ≤ 0 and minimal

element θd > −1, that reduces the household’s relative preference to consume in period 0.

Each agent can save in a risk-free bond with interest rate R = 1/δ, fixed and unresponsive

to demand as in a small open economy. Each agent receives income wtnit in each period,

where wt ∈ R+ is a wage and nit ∈ R is the amount that agent i works. Therefore, for each

period t, the agent faces a budget constraint cit + bit ≤ wtnit + Rbi,t−1, where bit is savings

and bi,−1 = 0 for all agents.

Goods are produced by a representative firm, at which all of the agents work. The

firm produces output via a linear production technology, yt =
∫
[0,1]

nit di. In all periods, the

output market clears as yt =
∫
[0,1]

cit di = yt and the bond market clears as 0 =
∫
[0,1]

bit di. At

t = 0, given the fixed interest rate, these conditions would be incompatible with equilibrium

in the labor market. We therefore make the conventional assumption that, in this period, the

firm commits to satisfying demand at the (fixed) price, households lie off their labor supply

curve, and households all work an equal amount. We refer to this period as a liquidity trap,

since the market failure is caused by the inability of interest rates to adjust downward to

accommodate the negative demand shock.

We are interested in how equilibrium at t = 0 is affected by demand shocks, under the

assumptions that households imperfectly optimize and that their cost is affected by financial

stress. To simplify our analysis, we assume that all choices for t ≥ 1, after the economy exits

the liquidity trap, are made frictionlessly. At t = 0, households choose ci0 ∈ [c, c], where

c < δ
1−δ

, to maximize expected utility net of cognitive costs, given rational expectations

about future aggregates and their future behavior.11

We introduce the idea that stress may lead to lower-quality decisions in low-income states

via the cost functional. This idea is motivated by the experimental findings of Mani et al.

(2013) suggesting that poverty, transitory or persistent, reduces performance in cognitive

tasks. Mullainathan and Shafir (2013) hypothesize that involuntary capture of attention

toward contemplating negative outcomes in these states reduces the available bandwidth to

make decisions, and therefore makes people more prone to “forgetfulness” and “cognitive

slips” (p. 14). We model this by letting λ(y, θd) = y−τ , where y is consumers’ period-

11The condition c < δ
1−δ ensures that consumption in periods t ≥ 1 does not exceed the bliss point.
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0 income and τ ≥ 0 is a parameter controlling how quickly decision costs increase when

income is low. We let the cost-functional kernel be any ϕ that satisfies Assumption 3.

Our model captures in reduced form the diversion of cognitive resources away from the

decision of interest for consumption and savings, and hence the scarcity of attention avail-

able for the decision problem of interest.12 In equilibrium, this diversion will depend on the

actions (consumption) of others, because this will determine aggregate demand and, there-

fore, individuals’ income. In this way, our model is motivated by the combination of the

experimental and survey evidence of Mani et al. (2013) and Sergeyev et al. (2022) about

individual-level stress and decisions; the fact that business cycles shift aggregate poverty

rates (see, e.g., Meyer and Sullivan, 2011); and the fact that adverse mental health outcomes

and anxiety increase in aggregate during economic downturns (see, e.g., Frasquilho et al.,

2015).

Recasting the Economy as a Game. We now analyze the consumer’s problem to reduce

the equilibrium determination of first-period consumption to a game to which our results can

be applied. It is simple to show that, for t ≥ 1, aggregate output is fixed at a level ȳ > 0 and

each agents’ consumption is fixed at a specific level which depends on their period 0 savings.

This exact consumption result smoothing follows from the intertemporal Euler equation and

the simplifying assumption that δR = 1 (see, e.g., Hall, 1978). Next, because the payoff for

t ≥ 1 is always increasing in period 0 savings, the agent saves all unspent income at t = 0:

bi0 = y0 − ci0. Using these observations, and defining ci = ci0 and y =
∫
[0,1]

ci di, we can

re-write the objective as

u(c, y, θd) = α(y, θd)− β(y, θd)(c− γ(y, θd))
2 (41)

where13

γ(y, θd) = (1−m)(θd + ȳ) +my

β(y, θd) =
1

2(1−m)

(42)

and m = χ(1−δ)
χ+δ

∈ (0, 1) is the agent’s marginal propensity to consume (MPC), which itself

depends positively on labor disutility χ and negatively on the discount factor δ. In the

limit where labor supply is inelastic, or χ → ∞, then m → 1 − δ as is familiar from the

permanent income hypothesis. The payoff representation is exact, not approximate, since

the original payoffs were quadratic. We finally observe that the cost shifter can be written as

12As a different, and complementary formalization that is consistent with their novel survey evidence,
Sergeyev et al. (2022) formalize the Mullainathan and Shafir (2013) hypothesis as an involuntary use of time
that could otherwise be allocated to labor or leisure.

13A more cumbersome expression for α(y, θd) is given in Appendix A.10.
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λ(X) = X−τ , because of the aforementioned fact that each agent’s income equals aggregate

demand in equilibrium in the liquidity trap. Our model therefore captures cognitive stress

induced by the aggregate business cycle; since our model has no individual heterogeneity in

income during the liquidity trap, it abstracts from this dimension of cognitive stress.

Results and Interpretation. Applying our general results, we can provide conditions

under which a generalized beauty contest has a unique equilibrium with a number of eco-

nomically relevant properties:

Corollary 4. If the following condition holds for all c, y ∈ [c, c] and θd ∈ Θd:

0 < m− τ

y
(c− (1−m) (ȳ + θd)−my) < 1 (43)

then there exists a unique equilibrium in which (i) the distribution of consumption and ag-

gregate output are monotone increasing in the demand shock θd and (ii) the precision of

consumption is monotone decreasing in the demand shock θd and in aggregate output y.

Moreover, if the planner’s problem is strictly concave, a necessary condition for the effi-

ciency of the unique equilibrium is that:

y = ȳ +
τ

χ
y−τ−1

∫ c

c

ϕ(p∗(c | θd)) dc (44)

Thus, whenever cognitive costs are positive, an efficient allocation in an economy with τ > 0

has higher output than an efficient allocation in an economy with τ = 0.

Proof. See Appendix A.10.

The conditions in Equation 43 follow from the calculation in Lemmas 1 and 4. These

conditions are trivially satisfied if τ = 0 as higher demand increases income which increases

consumption (as m > 0), but less than one-for-one since the household discounts the future

and therefore has an MPC strictly less than one (as m < 1). If τ > 0, then there are poten-

tially countervailing forces that affect strategic complementarity. Concretely, when aggregate

output increases, stress decreases, and agents’ costs of precise optimization fall. If an agent

is consuming more than the optimal level, this makes them prone to consume closer to the

optimal level and lower their consumption, inducing strategic substitutability. Conversely, if

an agent is consuming less than the optimal level, this makes them prone to consume more

and induces additional strategic complementarity. The condition provides the precise condi-

tions under which these concerns do not upset total strategic complementarity (consumption

increases when income increases) and sufficient concavity (consumption increases less than
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one-for-one). Under these conditions, we know that higher demand increases aggregate out-

put (point (i)); that higher demand shifts the entire distribution of consumption upward

of first-order stochastic dominance (point (ii)); and that agents’ actions are more precise in

high states, due to their experiencing lower stress and, therefore, (endogenously) lower costs

of attention in these states.

The second result, the necessary condition for efficiency, conveys that the introduction

of the stress mechanism increases the optimal level of output. The reason is that the stress

mechanism creates an externality operating through cognitive costs: if one agent consumes

more, increasing aggregate demand and output, they reduce stress (cognitive costs) for all

other agents. The extent of this externality in state θd is proportional to the cognitive cost

paid ex post in that state. Thus, the externality would disappear were there no cost of

cognition. And the extent of cognitive costs would not affect the optimal allocation were

there no stress and, by implication, no externality operating purely through cognition.

Economic Lessons. Our prediction for endogenous precision, or higher consumption “mis-

takes” in low output states, is consistent with the evidence from Berger et al. (2023) that

the cross-sectional distribution of US consumption becomes more dispersed in recessions. In

our case, this result arises because of the equilibrium effect of low income causing stress that

worsens decisionmaking. Our psychological explanation complements mechanisms studied in

the literature related to the cyclicality of income risk and the role of financial constraints.14

In the emerging literature on how household stress affects decisionmaking, our results

complement those in the study of Sergeyev et al. (2022), who use original survey evidence to

measure the extent of financial stress among US households and to calibrate a macroeconomic

model in which financial stress distracts from productive labor supply. Our mechanism is

different (stress reducing decision quality) and makes a different prediction, potentially in

line with the data, about consumption dispersion.

Our normative results clarify how the stress channel may translate into inefficiency at

the macro level. In particular, our results rationalize a “paradox of scarcity” logic: by

not spending, households contribute toward lower overall output, which induces further

financial stress for others and has psychological costs. This mechanism relies crucially on

the endogeneity of income, and hence stress, to others’ decisions.

Finally, we note that our analysis contrasts with abstract results in examples studied by

Hébert and La’O (2022) and Angeletos and Sastry (2023) in two ways. First, we isolate

a cognitive externality that may be difficult to formalize in a model of costly information

14Moreover, Sergeyev et al. (2022) find in their original survey that liquidity constraints exacerbate re-
ported psychological stress related to making economic decisions. Therefore, in practice, the psychological
and liquidity-constraint channels may reinforce one another in a richer model that accommodates both.
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acquisition (see the discussion of Fact 5 in Section 2.3). Second, we can precisely characterize

equilibrium, its comparative statics properties, the equilibrium externality, and the optimal

direction of policy response in an inefficient setting.

5 Extensions

5.1 State-Separable vs. Mutual Information Costs

Although its foundations are in information theory, the mutual information model of Sims

(2003) also makes predictions for stochastic choice or “imperfect optimization.” Decision-

theoretic work by Caplin et al. (2022) characterizes these behavioral predictions, and Wood-

ford (2012) and Dean and Neligh (2022) discuss how they match some, but not all, features

of imperfect perception and choice in the lab. Moreover, in many applications in macroeco-

nomics in finance, information choice is unobserved and/or not the focus of predictions per

se. Instead, the focus is on the aforementioned predictions for imperfect optimization and

how they play out in equilibrium.

In Appendix B, we contrast the predictions of state-separable and mutual information

costs as alternative models of stochastic choice in large games. First, extending a result in

Matějka and McKay (2015), we give abstract conditions under which the predictions of a

version of the strategic mistakes model with logit costs gives identical predictions to a twin

model with mutual information costs and a restriction of agents’ (subjective) priors. Relaxing

this condition isolates the key difference between the models—the mutual information model

naturally allows agents to anchor toward commonly played actions as if they were “default

points.”

Next, we numerically explore a linear beauty contest game (Morris and Shin, 2002; An-

geletos and Pavan, 2007) under both state-separable and mutual information costs. The

model with state-separable costs predicts a unique equilibrium in which aggregate quantities

are monotone in a driving shock, consistent with our abstract results. The mutual informa-

tion model opens the door to multiple equilibria, via coordination on specific support points

of action distributions. We show how the equilibrium operator in the mutual information

model is not a contraction map, thus providing an explicit counterexample to the possibility

of using this paper’s analytical tools to show similar results in a mutual-information setting.

We conclude that, while the information-acquisition underpinning and “anchoring” ob-

servation may be realistic for individual behavior in some applications, these components

of the mutual information model open up the door to somewhat pathological equilibrium

predictions and preclude sensible comparative statics analysis. Thus, in situations where
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researchers are concerned primarily with stochastic choice, the strategic mistakes model

may be a tractable alternative that is still behaviorally rich enough to capture important,

experimentally verified features of behavior (see Section 2.3).

5.2 State-Separable Costs in Binary-Action Games

In Online Appendix C, we study strategic mistakes in binary-action games, which are used

in many applications to capture an extensive margin of adjustment and/or to simplify anal-

ysis.15 We derive sufficient conditions on cognitive costs and payoffs to ensure unique and

monotone equilibria and illustrate our results in the context of a simple investment game with

linear payoffs (as in Yang, 2015). Unlike the continuous-action games studied in our main

analysis, binary-action supermodular games may have multiple equilibria with small stochas-

tic choice frictions. This result hinges on agents’ ability to waver between options that have

similar payoffs, but are far apart in the action space and induce very different equilibrium

externalities. This result offers the following insight for researchers interested in well-posed

comparative statics and not multiplicity per se: a “more complex” continuous-action model,

by smoothing out aggregate best-response functions, may admit simpler analysis than a

comparable binary-action model.

6 Conclusion

This paper introduces a new class of state-separable control costs in large games. We show

how these costs accommodate a rich class of decision frictions. We provide results on equi-

librium existence, uniqueness, efficiency, and monotonicity of equilibrium distributions, ag-

gregates, and mistakes. We apply these results to make robust equilibrium predictions in

two macroeconomic applications, respectively to price-setting in a monetary economy and

consumption and savings in a liquidity trap.

This paper’s analysis of decision frictions in large games may be applicable to many

additional settings in macroeconomics and finance. In Section 4, we show how to recast

price-setting in a monetary economy and consumption-savings choice in a liquidity trap as

games with common payoff-relevant states (the money supply or aggregate demand shock)

and strategic complementarity summarized in payoffs by an aggregator (the price level or

real GDP). Angeletos and Lian (2016) surveys other settings in macroeconomics and finance

with similar characteristics, including asset pricing and strategic firm investment.

The following “practical guide” generalizes the steps of Section 4 and may be useful to

15See Angeletos and Lian (2016) (in particular, Section 5) for a review of this literature.
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researchers in macroeconomics and finance who want to make general equilibrium statements

about the properties of economies that feature decision frictions. First, micro-found payoffs

and aggregation in the setting of interest. Second, based on an understanding of how imper-

fect optimization varies across states, specify an appropriate weighting function λ (or a class

of plausible candidates, whose predictions one wants to contrast). Third, algebraically verify

the conditions underlying our main results for equilibrium existence, equilibrium uniqueness,

monotone comparative statics, and equilibrium efficiency. Fourth, use these conditions to

generate theoretically robust and, potentially, empirically testable predictions.

Appendices

A Omitted Proofs

A.1 Proof of Lemma 1

Proof. Define ũ = u
λ
. Inequality 9 can be re-expressed as:

ũ(x′, X ′, θ) + ũ(x,X, θ) ≥ ũ(x′, X, θ) + ũ(x,X ′, θ) (45)

which is the statement that ũ is a supermodular function in (x,X). By Topkis’ Charac-

terization Theorem (see e.g, Milgrom and Roberts, 1990), when ũ is twice continuously

differentiable in (x,X), this is equivalent to the statement that ũxX(x,X, θ) ≥ 0. As we

have assumed that u and λ are both twice continuously differentiable in (x,X), Inequality

9 is equivalent to:

ũxX(x,X, θ) =
uxX(x,X, θ)− ux(x,X, θ)λX(X,θ)

λ(X,θ)

λ(X, θ)
≥ 0 (46)

Inequality 10 can be re-expressed as:

ũ(x′, X + α, θ) + ũ(x− α,X, θ) ≤ ũ(x,X + α, θ) + ũ(x′ − α,X, θ) (47)

Define f(y, γ; θ,X) = ũ(y + γ,X + γ, θ). Set y′ = x′ − α, y = x− α, γ′ = α and γ = 0 and

observe that y′ ≥ y and γ′ ≥ γ. Inequality 47 is equivalent to:

f(y′, γ′; θ,X) + f(y, γ; θ,X) ≤ f(y, γ′; θ,X) + f(y′, γ; θ,X) (48)
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Which is equivalent to submodularity of f(· ; θ,X) in (y, γ). Again by Topkis’ Character-

ization Theorem, and by twice continuous differentiability of f in (y, γ), this is equivalent

to:

fyγ(y, γ; θ,X) = ũxx(y + γ,X + γ, θ) + ũxX(y + γ,X + γ, θ) ≤ 0 (49)

Moreover, ũxx = uxx

λ
. Thus, Inequality 10 is equivalent to:

−uxx(x,X, θ)

λ(X, θ)
≥ ũxX(x,X, θ) =

uxX(x,X, θ)− ux(x,X, θ)λX(X,θ)
λ(X,θ)

λ(X, θ)
(50)

Combining Inequalities 46 and 50 and multiplying by λ > 0, we obtain the claimed result.

A.2 Proof of Lemma 3

To establish the result, as the entropy kernel has derivative ϕ′(x) = 1 + log x and ϕ′(x) = x,

it is sufficient to show the following:

Lemma 6. F , the class of functions satisfying quasi-MLRP, contains {log(·), Id(·)}.

Proof. To see that quasi-MLRP is satisfied for f(x) = log x (and 1 + log x), the required

condition (Equation 7) becomes:

( g′(x′)

g′(x)
≥ g(x′)

g(x)
∀x′ ≥ x

)
=⇒ g′ ⪰FOSD g (51)

The left-hand side of this implication is simply the MLRP property. Moreover, MLRP

implies FOSD. We now prove that f(x) = x satisfies quasi-MLRP. This requires us to prove

that for any two distributions g′, g ∈ ∆(X ):(
g′(x′)− g′(x) ≥ g(x′)− g(x) ∀x′ ≥ x

)
=⇒ g′ ⪰FOSD g (52)

To do this, we first prove a technical lemma, which may be of future use for characterizing

other functions that satisfy quasi-MLRP:

Lemma 7. For any two distributions g′, g ∈ ∆(X ), the following holds:(
f(g′(x′))− f(g′(x)) ≥ f(g(x′))− f(g(x)) ∀x′ ≥ x

)
=⇒(∫ x

x
[f(g′(x̃))− f(g(x̃))] dx̃

x− x
≥
∫ x

x
[f(g′(x̃))− f(g(x̃))] dx̃

x− x
∀x ∈ X

)
(53)
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Proof. To prove the required implication, we begin with the hypothesis:

f(g′(x′))− f(g′(x)) ≥ f(g(x′))− f(g(x)) ∀x′ ≥ x (54)

Which can be rewritten as:

f(g′(x′)) + f(g(x)) ≥ f(g(x′)) + f(g′(x)) ∀x′ ≥ x (55)

We now integrate from x to x′ with respect to x to obtain the inequality:

(x′ − x)f(g′(x′)) +

∫ x′

x

f(g(x)) dx ≥ (x′ − x)f(g(x′)) +

∫ x′

x

f(g′(x)) dx (56)

Imposing x′ = x we obtain:

(x− x) [f(g′(x))− f(g(x))] ≥
∫ x

x

[f(g′(x̃))− f(g(x̃))] dx̃ (57)

Applying the same procedure but this time integrating from x to x with respect to x′ and

evaluate at x′ = x to obtain this inequality:∫ x

x

[f(g′(x̃))− f(g(x̃))] dx̃ ≥ (x− x) [f(g′(x))− f(g(x))] (58)

Combining our two inequalities we obtain the required one:∫ x

x
[f(g′(x̃))− f(g(x̃))] dx̃

x− x
≥
∫ x

x
[f(g′(x̃))− f(g(x̃))] dx̃

x− x
∀x ∈ X (59)

Which completes the proof.

Thus, if it can be established that:(∫ x

x
[f(g′(x̃))− f(g(x̃))] dx̃

x− x
≥
∫ x

x
[f(g′(x̃))− f(g(x̃))] dx̃

x− x
∀x ∈ X

)
=⇒ g′ ⪰FOSD g

(60)

then we will have established that function f satisfies quasi-MLRP.

We now use this to prove that f(x) = x satisfies quasi-MLRP. Plugging in to the derived
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integral condition, we obtain:

G(x)−G′(x)

x− x
≥ G′(x)−G(x)

x− x
∀x ∈ X (61)

Re-arranging this:

G(x) ≥ G′(x) ∀x ∈ X (62)

which is the definition that g′ ⪰FOSD g. This completes the proof and establishes that

quasi-MLRP is a strict weakening of MLRP.

A.3 Proof of Proposition 1

Proof. This follows immediately from the step proving the monotonicity and discounting

conditions in Theorem 1. Note that this invokes only Assumptions 1 and 3.

A.4 Proof of Theorem 1

Proof. We first study the problem of a single agent i who is best replying to the conjecture

that the law of motion of the aggregate is X̂ : Θ → R. See that this agent faces the problem:

P∗(X̂) = argmax
P∈P

∑
Θ

∫
X
u(x, X̂(θ), θ) dP (x|θ) π(θ)− c(P, X̂) (63)

First, let us examine the set of stochastic choice rules:

P = {P : Θ → ∆(X )} =
∏
θ∈Θ

∆(X ) (64)

See that ∆(X ) is compact as X is compact. It therefore follows by finiteness of Θ that P is

compact.

Define k : P × B → R̄, where B = {X̂ : Θ → R} as:

k(P, X̂) =
∑
Θ

∫
X
u(x, X̂(θ), θ) dP (x|θ) π(θ)− c(P, X̂) (65)

As ϕ is strictly convex and u is bounded, it is without loss of optimality to restrict to

optimizing over the set of stochastic choice rules with density bounded above by someM ∈ R,
PM . This is a closed set, which is a subset of a compact set P , and therefore also compact.

Moreover, k is continuous in P , by continuity of u and continuity of c over PM for any M .

Thus, by Weierstrass’ theorem, there exists a maximum. Moreover, by strict convexity of
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k(·, X̂), it is unique. It immediately follows that in any equilibrium P ∗
i = P ∗ = P∗(X̂) for

all i and thus that there cannot exist asymmetric equilibria.

To show existence of an equilibrium it suffices to show that there exists a X̂ such that:

X̂ = X ◦ P∗(X̂) (66)

To this end define the operator T : B → B such that:

T (X̂) = X ◦ P∗(X̂) (67)

We wish to show that T has a fixed point. We will moreover prove that this fixed point is

unique as under the stated assumptions we can prove that T is a contraction map. To this

end, we wish to apply Blackwell’s sufficient conditions for an operator to be a contraction.

More specifically, if T operates on the space of bounded functions and is endowed with the

sup norm, then the following are sufficient for T to be a contraction:

1. Monotonicity: X̂ ′ ≥ X̂ =⇒ T (X̂ ′) ≥ T (X̂) for any X̂ ′, X̂ ∈ B

2. Discounting: there exists β ∈ (0, 1) such that T (X̂ + α) ≤ T (X̂) + βα for all α ∈ R+

and any X̂ ∈ B

Toward proving these properties, we first derive some necessary conditions for optimal

stochastic choice. To this end, see that the stochastic choice program under an equilibrium

conjecture X̂ is given by:

max
p∈P

∑
Θ

∫
X
u(x, X̂(θ), θ) dP (x|θ) π(θ)−

∑
Θ

∫
X
ϕ(p(x|θ)) dx π(θ)λ(X̂(θ), θ) (68)

Take the optimal policy p and now consider a family or perturbations of p around actions

x, x′ ∈ X in state θ ∈ Θ such that p(x|θ; X̂), p(x′|θ; X̂) > 0 by ε > 0 and δ ≥ 0 such that:

p̃(x̃|θ; X̂) = p(x̃|θ; X̂) + ε, x̃ ∈ [x′, x′ − δ]

p̃(x̃|θ; X̂) = p(x̃|θ; X̂)− ε, x̃ ∈ [x, x− δ]
(69)

For p that has full support on [x′, x′ − δ], [x, x − δ], we have that p̃ ∈ P . Moreover, as u

is continuous, if δ is sufficiently small, such a full-support perturbation is possible by the

property that p(x|θ; X̂), p(x′|θ; X̂) > 0 and the fact that p is optimal.

Taking the derivative of the value of p̃ in ε and evaluating at ε = 0, we obtain the
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necessary optimality condition:∫ x′

x′−δ

[
u(x̃, X̂(θ), θ)π(θ)− ϕ′(p(x̃|θ; X̂))π(θ)λ(X̂(θ), θ)

]
dx̃

=

∫ x

x−δ

[
u(x̃, X̂(θ), θ)π(θ)− ϕ′(p(x̃|θ; X̂))π(θ)λ(X̂(θ), θ)

]
dx̃

(70)

Normalizing both sides by δ > 0, we obtain:∫ x′

x′−δ

[
u(x̃, X̂(θ), θ)π(θ)− ϕ′(p(x̃|θ; X̂))π(θ)λ(X̂(θ), θ)

]
dx̃

δ

=

∫ x

x−δ

[
u(x̃, X̂(θ), θ)π(θ)− ϕ′(p(x̃|θ; X̂))π(θ)λ(X̂(θ), θ)

]
dx̃

δ

(71)

Taking the limit of both sides as δ → 0, applying L’Hôpital’s rule and Leibniz’s rule we

obtain:

u(x′, X̂(θ), θ)− λ(X̂(θ), θ)ϕ′(p(x′|θ; X̂)) = u(x, X̂(θ), θ)− λ(X̂(θ), θ)ϕ′(p(x|θ; X̂)) (72)

This condition is necessary for all x, x′ ∈ X that have a positive density in state θ.

By the previous necessary condition and the supermodularity assumption (Assumption

1) we have that, for all x′ ≥ x in the support of both stochastic choice rules, all θ, and any

conjectures X̂ and X̂ ′ such that X̂ ′ ≥ X̂:

ϕ′(p(x′|θ; X̂ ′))− ϕ′(p(x|θ; X̂ ′)) =
u(x′, X̂ ′(θ), θ)

λ(X̂ ′(θ), θ)
− u(x, X̂ ′(θ), θ)

λ(X̂ ′(θ), θ)

≥ u(x′, X̂(θ), θ)

λ(X̂(θ), θ)
− u(x, X̂(θ), θ)

λ(X̂(θ), θ)

= ϕ′(p(x′|θ; X̂))− ϕ′(p(x|θ; X̂))

(73)

We now need to check the cases where the stochastic choice rules do not have full support.

Define the support in state θ under law of motion X̂ as X (θ, X̂) = clX{x ∈ X : p∗(x|θ,X ) >

0}. Let x̂ ∈ X (θ, X̂), x̃ ∈ X (θ, X̂ ′) and define x′ = max{x̂, x̃}, x = min{x̂, x̃}. We proceed

to show that X (θ, X̂) is monotone in the strong set order in X̂. That is, for X̂ ′ ≥ X̂, we

have that x′ ∈ X (θ, X̂ ′) and x ∈ X (θ, X̂). By Assumption 1, u is a concave function of x.

This implies that X (θ, X̂) is an interval. We will denote its lower end-point by x(θ, X̂) and

its upper end-point by x(θ, X̂). We also note that p(x(θ, X̂)|θ, X̂) = p(x(θ, X̂)|θ, X̂) = 0.

Showing that x ∈ X (θ, X̂) is increasing in the strong set order therefore reduces to showing

that x(θ, X̂) ≤ x(θ, X̂ ′) and x(θ, X̂) ≤ x(θ, X̂ ′). Without loss of generality (the other case
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follows by identical arguments), we will show that x(θ, X̂) ≤ x(θ, X̂ ′).

Toward a contradiction, suppose that x(θ, X̂) > x(θ, X̂ ′). There are two cases to consider:

the case in which the supports strictly overlap x(θ, X̂) < x(θ, X̂ ′), and the case in which they

do not x(θ, X̂) ≥ x(θ, X̂ ′). First, consider the case in which x(θ, X̂) < x(θ, X̂ ′). By continuity

of p(·|θ, X̂ ′) and p(·|θ, X̂), the fact that 0 = p(x(θ, X̂)|θ, X̂) < p(x(θ, X̂)|θ, X̂ ′), and the fact

that p(x|θ, X̂) > 0 for x ∈ (x(θ, X̂), x(θ, X̂ ′)), there exists an x ∈ (x(θ, X̂), x(θ, X̂ ′)) such

that p(x|θ, X̂ ′) > p(x|θ, X̂). Fix also any x′ ∈ (x(θ, X̂ ′), x(θ, X̂)). Consider a perturbation,

as per Equation 69 that moves density from (a neighborhood of) x to (a neighborhood of)

x′ in state θ under conjecture X̂ ′. We have that the following holds:

ϕ′(0)− ϕ′(p(x|θ, X̂ ′)) < ϕ′(p(x′|θ, X̂))− ϕ′(p(x|θ, X̂))

=
u(x′, θ, X̂(θ))

λ(X̂(θ), θ)
− u(x, θ, X̂(θ))

λ(X̂(θ), θ)

≤ u(x′, θ, X̂ ′(θ))

λ(X̂ ′(θ), θ)
− u(x, θ, X̂ ′(θ))

λ(X̂ ′(θ), θ)

(74)

where the first line follows from the strict convexity of ϕ, the fact that p(x′|θ, X̂) > 0, and

the fact that p(x|θ, X̂ ′) > p(x|θ, X̂). The second line follows from the optimality of p(·|θ, X̂).

The third line follows by Assumption 1. However, Equation 74 implies that the considered

perturbation provides a strict gain relative to p(·|θ, X̂ ′), which contradicts the optimality of

p(·|θ, X̂ ′).

Consider now the case in which x(θ, X̂) ≥ x(θ, X̂ ′). By the fact that p(·|θ, X̂) is strictly

preferred to p(·|θ, X̂ ′) when the aggregate follows X̂, we have that:

∫ x(θ;X̂)

x(θ;X̂)

u(x, X̂(θ), θ)

λ(X̂(θ), θ)
p(x|θ, X̂) dx−

∫ x(θ;X̂′)

x(θ;X̂′)

u(x, X̂(θ), θ)

λ(X̂(θ), θ)
p(x|θ, X̂ ′) dx

>

∫ x(θ;X̂)

x(θ;X̂)

ϕ(p(x|θ, X̂)) dx−
∫ x(θ;X̂′)

x(θ;X̂′)

ϕ(p(x|θ, X̂ ′)) dx

(75)

Moreover, as x(θ, X̂) > x(θ, X̂ ′), we have by Assumption 1 that:

∫ x(θ;X̂)

x(θ;X̂)

u(x, X̂ ′(θ), θ)

λ(X̂ ′(θ), θ)
p(x|θ, X̂) dx−

∫ x(θ;X̂′)

x(θ;X̂′)

u(x, X̂ ′(θ), θ)

λ(X̂ ′(θ), θ)
p(x|θ, X̂ ′) dx

≥
∫ x(θ;X̂)

x(θ;X̂)

u(x, X̂(θ), θ)

λ(X̂(θ), θ)
p(x|θ, X̂) dx−

∫ x(θ;X̂′)

x(θ;X̂′)

u(x, X̂(θ), θ)

λ(X̂(θ), θ)
p(x|θ, X̂ ′) dx

(76)
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Combining these inequalities, we obtain that:

∫ x(θ;X̂)

x(θ;X̂)

u(x, X̂ ′(θ), θ)p(x|θ, X̂) dx− λ(X̂ ′(θ), θ)

∫ x(θ;X̂)

x(θ;X̂)

ϕ(p(x|θ, X̂)) dx >∫ x(θ;X̂′)

x(θ;X̂′)

u(x, X̂ ′(θ), θ)p(x|θ, X̂ ′) dx− λ(X̂ ′(θ), θ)

∫ x(θ;X̂′)

x(θ;X̂′)

ϕ(p(x|θ, X̂ ′)) dx

(77)

which implies that p(·|θ, X̂) is strictly better than p(·|θ, X̂ ′) when the aggregate follows X̂ ′,

which contradicts the optimality of p(·|θ, X̂ ′).

Thus, we have shown that X (θ, X̂) is monotone in the strong set order in X̂ and we have

derived (by Equation 72) that:

ϕ′(p(x′|θ; X̂ ′))− ϕ′(p(x|θ; X̂ ′)) ≥ ϕ′(p(x′|θ; X̂))− ϕ′(p(x|θ; X̂)) (78)

for all x′ ≥ x such that x′, x ∈ X (θ, X̂) ∩ X (θ, X̂ ′). Thus, if ϕ′ satisfies quasi-MLRP

(Assumption 3), then we have that p(θ; X̂ ′) ⪰FOSD p(θ; X̂) for all θ. It then follows by the

monotonicity property of the aggregator (Assumption 2) that X(p(θ; X̂ ′)) ≥ X(p(θ; X̂)) for

all θ and therefore that T (X̂ ′) ≥ T (X̂), which establishes the required monotonicity property

of the equilibrium operator.

We now prove discounting. To this end, we will show that when we take X̂ ′ = X̂ + α

for α ∈ R+ that the resulting stochastic choice is dominated by an α right translation of

the original stochastic choice under X̂. Under this transformation, observe by the necessary

condition for optimality and the sufficient concavity condition on utility (Assumption 1),

we can apply the same arguments as above to derive that for all x′ ≥ x such that x′, x ∈
X (θ, X̂) ∩ X (θ, X̂ + α):

ϕ′(p−α(x
′|θ; X̂))− ϕ′(p−α(x|θ, X̂)) =

u(x′ − α, X̂(θ), θ)

λ(X̂(θ), θ)
− u(x− α, X̂(θ), θ)

λ(X̂(θ), θ)

≥ u(x′, X̂(θ) + α, θ)

λ(X̂(θ) + α, θ)
− u(x, X̂(θ) + α, θ)

λ(X̂(θ) + α, θ)

= ϕ′(p(x′|θ; X̂ + α))− ϕ′(p(x|θ; X̂ + α))

(79)

We now show that x(θ, X̂)+α ≥ x(θ, X̂+α) and x(θ, X̂)+α ≥ x(θ, X̂+α). Without loss of

generality (the other case follows by identical arguments), we will show that x(θ, X̂) + α ≥
x(θ, X̂ + α). Toward a contradiction, suppose that x(θ, X̂) + α < x(θ, X̂ + α). As in the

previous argument, there are two cases to consider, the case in which the supports strictly

overlap x(θ, X̂)+α > x(θ, X̂+α) and the case in which the supports are disjoint x(θ, X̂)+α ≤
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x(θ, X̂ + α). In the overlapping support case, fix an x ∈ (x(θ, X̂ + α), x(θ, X̂) + α) such

that p−α(x|θ, X̂) > p(x|θ, X̂ + α) > 0 (which is possible by the same arguments used in the

first part of the proof). Fix next a point x′ ∈ (x(θ, X̂) + α, x(θ, X̂ + α)). And consider a

perturbation that moves density from x − α to x′ − α in state θ under conjecture X̂. The

following holds:

ϕ′(0)− ϕ′(p−α(x|θ, X̂)) < ϕ′(p(x′|θ, X̂ + α))− ϕ′(p(x|θ, X̂ + α))

=
u(x′, X̂(θ) + α, θ)

λ(X̂(θ) + α, θ)
− u(x, X̂(θ) + α, θ)

λ(X̂(θ) + α, θ)

≤ u(x′ − α, X̂(θ), θ)

λ(X̂(θ), θ)
− u(x− α, X̂(θ), θ)

λ(X̂(θ), θ)

(80)

where the first inequality follows by construction, the second by optimality, and the third by

Assumption 1. This contradicts the optimality of p(·|θ, X̂). In the non-overlapping case, we

can follow the same steps as the first part of the proof, adapted in the obvious way (using

the sufficient concavity inequality in place of the supermodularity inequality).

Thus, by quasi-MLRP of ϕ′ (Assumption 3), we have that p−α(θ, X̂) ⪰FOSD p(θ, X̂ + α)

where p−α is the described right translation by α of p. Moreover, by the discounting property

of the aggregator (Assumption 2), we then have that:

T (X̂ + α) ≤ X ◦ p−α(X̂) ≤ T (X̂) + βα (81)

which establishes the discounting property of T . We have now shown that T satisfies Black-

well’s sufficient conditions and is a contraction map. By the Banach fixed point theorem,

there then exists a unique equilibrium Ω.

A.5 Proof of Theorem 2

Proof. To show that the unique equilibrium aggregate law of motion of monotone in θ, we

use Corollary 1 from Chapter 3 of Stokey et al. (1989).

Define the set of monotone increasing and bounded functions M = {X̂ ∈ B|X̂(θ′) ≥
X̂(θ) ∀θ, θ′ ∈ Θ : θ′ ≥ θ}. See that this set is closed. If we can show that T (X̂) ∈ M for

any X̂ ∈ M, then we know that the unique fixed point of T is in M and therefore that the

unique equilibrium law of motion is in M according to Corollary 1 of Stokey et al. (1989).

To this end, we wish to show that:

X̂(θ′) ≥ X̂(θ) ∀θ, θ′ ∈ Θ : θ′ ≥ θ =⇒ T (X̂)(θ′) ≥ T (X̂)(θ) ∀θ, θ′ ∈ Θ : θ′ ≥ θ (82)
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This follows immediately from the necessary condition used in the proof of Theorem 1. More

precisely, by the necessary optimality condition (Equation 72) from the proof of Theorem 1

and Assumption 4, we have that for all x′ ≥ x such that x′, x ∈ X (θ) ∩ X (θ′)

ϕ′(p(x′|θ′, X̂))− ϕ′(p(x|θ′, X̂)) ≥ u(x′, X̂(θ′), θ′)

λ(X̂(θ′), θ′)
− u(x, X̂(θ′), θ′)

λ(X̂(θ′), θ′)

≥ u(x′, X̂(θ), θ)

λ(X̂(θ), θ)
− u(x, X̂(θ), θ)

λ(X̂(θ), θ)

= ϕ′(p(x′|θ, X̂))− ϕ′(p(x|θ, X̂))

(83)

In the case where optimal action distributions do not have full support, the same arguments

for the monotonicity of X (θ, X̂) imply monotonicity of X (θ) = X (θ, X̂(θ)) in the strong set

order when X̂ is montotone increasing. Thus, by the quasi-MLRP property of ϕ′ (Assumption

3) we then have that p(θ′; X̂) ⪰FOSD p(θ; X̂) and thus by the monotonicity of the aggregator

(Assumption 2) that T (X̂)(θ′) ≥ T (X̂)(θ).

A.6 Proof of Theorem 3

Proof. Recall also by Theorem 1, that the unique symmetric stochastic choice rule consistent

with the unique equilibrium X̂ solves the following program:

p ∈ argmax
p∈P

∑
Θ

∫
X
u(x, X̂(θ), θ) dP (x|θ) π(θ)−

∑
Θ

∫
X
ϕ(p(x|θ))dx π(θ)λ(X̂(θ), θ) (84)

where we will suppress the dependence of the optimal policy on X̂ as it is unique. Applying

the necessary optimal condition from the proof of Theorem 1 (Equation 72), for a given x

such that p(x|θ) > 0, we have that:

u(γ(X̂(θ), θ), X̂(θ), θ)− u(x, X̂(θ), θ) = λ(X̂(θ), θ)
(
ϕ′(p(γ(X̂(θ), θ)|θ))− ϕ′(p(x|θ))

)
(85)

Under Assumption 5, we moreover have that

u(x,X, θ) = α(X, θ)− β(X, θ)Γ(|x− γ(X, θ)|) (86)

Thus our necessary condition simplifies to:

β(X̂(θ), θ)

λ(X̂(θ), θ)
Γ(|x− γ(X̂(θ), θ)|) = ϕ′(p(γ(X̂(θ), θ)|θ))− ϕ′(p(x|θ)) (87)
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Now consider any θ, θ′ such that β̃(θ′, X̂(θ′)) ≥ β̃(θ, X̂(θ)) (where β̃ = β
λ
). Note that,

by Theorem 2, the aggregate X̂ is monotone increasing in the state θ. Thus if β̃(θ,X) is

decreasing in both arguments, the stated case corresponds to θ′ ≤ θ. If instead β̃(θ,X) is

increasing in both arguments, the stated case corresponds to θ′ ≥ θ. Therefore, to verify the

desired result, we now prove that the action distribution in state θ′ is more precise about

γ(θ′, X̂(θ′)) than the action distribution in state θ is about γ(θ, X̂(θ)), with respect to ϕ′.

To that end, we take x, x′ such that:

|x− γ(X̂(θ), θ)| = |x′ − γ(X̂(θ′), θ′)| (88)

It follows that:

ϕ′(p(γ(X̂(θ), θ)|θ))− ϕ′(p(x|θ)) = β̃(X̂(θ), θ)Γ(|x− γ(X̂(θ), θ)|)
≥ β̃(X̂(θ′), θ′)Γ(|x′ − γ(X̂(θ′), θ′)|)
= ϕ′(p(γ(X̂(θ′), θ′)|θ′))− ϕ′(p(x′|θ))

(89)

We now take care of those points that have no density. To this end consider the first-order

condition for p(x|θ):

u(x, X̂(θ), θ)− ϕ′(p(x|θ))− λ(θ)− κ(x, θ) = 0 (90)

where λ(θ) is the Lagrange multiplier on the constraint that
∫
X p(x|θ) = 1 and κ(x, θ) is

the Lagrange multiplier on the constraint that p(x|θ) ≥ 0. When p(x|θ) = 0, we have that

κ(x, θ) ≤ 0. Given our assumption on utility, this is given by:

κ(x, θ) = −β(X̂(θ), θ)Γ(|x− γ(X̂(θ), θ)|) + α(X̂(θ), θ)− λ(θ) (91)

which is monotonically decreasing in |x − γ(X̂(θ), θ)|. Thus, if there is an x such that

p(x|θ) = 0, then there exists an x̄(θ) such that p(x|θ) = 0 if and only if |x − γ(X̂(θ), θ)| ≥
|x̄(θ) − γ(X̂(θ), θ)|. Moreover, by monotonicity of β̃(X̂(θ), θ) in θ, we have that |x̄(θ) −
γ(X̂(θ), θ)| ≤ |x̄(θ′)−γ(X̂(θ′), θ′)|. Hence, so long as x ∈ [γ(X̂(θ), θ)−x̄(θ), γ(X̂(θ), θ)+x̄(θ)],

we always have that x′ ∈ [γ(X̂(θ′), θ′) − x̄(θ′), γ(X̂(θ′), θ′) + x̄(θ′)]. Thus, every element of

the support of p(θ) satisfies:

ϕ′(p(γ(X̂(θ), θ)|θ))− ϕ′(p(x|θ)) ≥ ϕ′(p(γ(X̂(θ′), θ′)|θ′))− ϕ′(p(x′|θ)) (92)

It follows then by the definition of precision that p(θ) is more precise about γ(X̂(θ), θ) than

p(θ′) about γ(X̂(θ′), θ′) under ϕ′.
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A.7 Proof of Theorem 4

Proof. By Assumption 6, there is a unique efficient stochastic choice rule PE. Moreover, for

any x, x′ ∈ X and θ ∈ Θ such that pE(x|θ) > 0 and pE(x′|θ) > 0, by the same variational

arguments used in the Proof of Theorem 1, and exploiting linearity of the aggregator we

have that:

u(x′, X(pE(θ)), θ)− u(x,X(pE(θ)), θ) + [f(x′)− f(x)]

∫
X
uX(x̃, X(pE(θ)), θ)pE(x̃|θ) dx̃

= λ(X(pE(θ)), θ)
(
ϕ′(pE(x′|θ))− ϕ′(pE(x|θ))

)
+ [f(x′)− f(x)]λX(X(pE(θ)), θ)

∫
X
ϕ(pE(x̃|θ)) dx̃

(93)

is necessary for optimality of pE. Moreover, if the efficient stochastic choice rule obtains in

equilibrium, we have that (by Equation 72):

u(x′, X(pE(θ)), θ)− u(x,X(pE(θ)), θ) = λ(X(pE(θ)), θ)
(
ϕ′(pE(x′|θ))− ϕ′(pE(x|θ))

)
(94)

These conditions coincide if and only if:

[f(x′)−f(x)]

∫
X
uX(x̃, X(pE(θ)), θ)pE(x̃|θ) dx̃ = [f(x′)−f(x)]λX(X(pE(θ)), θ)

∫
X
ϕ(pE(x̃|θ)) dx̃

(95)

As f is nowhere-constant, f(x′) ̸= f(x), and this condition reduces to:∫
X
uX(x̃, X(pE(θ)), θ)pE(x̃|θ) dx̃ = λX(X(pE(θ)), θ)

∫
X
ϕ(pE(x̃|θ)) dx̃ (96)

Substituting in pE = p∗, we obtain the statement in the claim.

A.8 Statement and Proof of Lemma 8

In this appendix, we state and prove a Lemma that specializes several of main results to the

case with quadratic payoffs of the form

u(x,X, θ) = α(X, θ)− β(X, θ)(x− γ(X, θ))2 (97)

In the statement below, we use the definition β̃(X, θ) = β(X, θ)/λ(X, θ). We also de-

fine the bias and dispersion of a stochastic choice rule P in state θ around optimal point

47



γ(X(P ), θ) as

Bias[P, θ] ≡
∫
X
(x− γ(X(P ), θ)) dP (x|θ)

Disp[P, θ] ≡
(∫

X
(x− γ(X(P ), θ))2 dP (x|θ)

) 1
2

(98)

Lemma 8. Suppose that Assumptions 2 and 3 hold and that payoffs are given by Equation

97. The following properties hold under the additional stated conditions.

1. Uniqueness. There exists a unique equilibrium if the following holds for all x ∈
X , X ∈ X and θ ∈ Θ:

−(1− γX(X, θ)) <
β̃X(X, θ)

β̃(X, θ)
(x− γ(X, θ)) < γX(X, θ) (99)

2. Monotone actions. The cross-sectional distribution of actions and the aggregate

action X are monotone in the fundamental if, in addition to the condition (99), the

following holds for all X ∈ X , x ∈ X , and θ ∈ Θ:16

β̃θ(X, θ)

β̃(X, θ)
(x− γ(X, θ)) < γθ(X, θ) (100)

3. Monotone precision. The precision of actions about the optimal action γ under ϕ′

is increasing (decreasing) in the strength of fundamentals if, in addition to (99) and

(100), β̃ is monotone decreasing (increasing) in both arguments.

4. Efficiency. A necessary condition for efficiency of the stochastic choice rule P ∗ under

Assumption 6 is that, for all θ,

λX(X(P ∗(θ)), θ)

∫
X
ϕ(p∗(x | θ)) dx

=αX(X(P ∗(θ)), θ)− βX(X(P ∗(θ)), θ)(Disp[P ∗(θ), θ])2

+ 2 γX(X(P ∗(θ)), θ) β(X(P ∗(θ)), θ)Bias[P ∗(θ), θ]

(101)

Proof. We have directly assumed that Assumptions 2, 3 and 5 hold. The first claim follows

so long as condition 99 implies Assumption 1, Supermodularity and Sufficient Concavity, for

the outcome-equivalent game with payoff curvature β̃ and associated payoff ũ.

16Where, for simplicity, we allow β to be defined for all states in a closed interval that contains Θ, and
assume it is differentiable in its second argument.
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For supermodularity, it is sufficient to show that ũxX(x,X, θ) > 0. We observe that

ũxX = −2β̃X(X, θ)(x− γ(X, θ)) + 2γX(X, θ)β̃(X, θ) This condition simplifies to γX(X, θ) >
β̃X(X,θ)

β̃(X,θ)
(x− γ(X, θ)), which is the second inequality of Equation 99.

For sufficient concavity, it is sufficient to show that |ũxx(X, θ)| > ũxX(x,X, θ). Observe

that |ũxx(X, θ)| = 2β̃(X, θ). The condition

2β̃(X, θ) > ũxX = −2β̃X(X, θ)(x− γ(X, θ)) + 2γX(X, θ)β̃(X, θ) (102)

simplifies to the first inequality of Equation 99: −(1− γX(X, θ)) < β̃X(X,θ)

β̃(X,θ)
(x− γ(X, θ)).

The second claim of the Lemma follows so long as condition 100 implies Assumption 4.

To see this, as we have already that ũxX(x,X, θ) > 0 for all x,X, θ, it is sufficient to check

that ũxθ(x,X, θ) > 0 for all x,X, θ. We note that ũxθ(x,X, θ) = −2β̃θ(X, θ)(x− γ(X, θ)) +

2γθ(X, θ)β̃(X, θ) and re-arrange to the desired expression.

The third claim follows directly by Theorem 3 as the payoffs in Equation 97 satisfy

Assumption 5.

The fourth claims follows by Theorem 4. Recall from Theorem 4 that a necessary condi-

tion for efficiency of an equilibrium P ∗ under Assumption 6 is that:∫
X
uX(x̃, X(P ∗(θ)), θ) dP ∗(x̃|θ) = λX(X, θ)

∫
X
ϕ(p∗(x | θ)) dx (103)

for all θ ∈ Θ. Using the payoff function, we calculate:

uX(x,X, θ) = αX(X, θ)− βX(X, θ)(x− γ(X, θ))2 + 2γX(X, θ)β(X, θ)(x− γ(X, θ)) (104)

Plugging this into the necessary condition and evaluating at the equilibrium aggregate

X̂(θ) = X(P ∗(θ)), we obtain:∫
X
uX(x̃, X(P ∗(θ)), θ) dP ∗(x̃|θ)

=

∫
X

[
αX(X(P ∗(θ)), θ)− βX(X(P ∗(θ)), θ)(x̃− γ(X(P ∗(θ)), θ))2

+ 2γX(X(P ∗(θ)), θ)β(X(P ∗(θ)), θ)(x̃− γ(X(P ∗(θ)), θ))
]
dP ∗(x̃|θ)

(105)
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Which can be rewritten in terms of the equilibrium bias and variance with respect to γ as:∫
X
uX(x̃, X(P ∗(θ)), θ) dP ∗(x̃|θ)

=αX(X(P ∗(θ)), θ)− βX(X(P ∗(θ)), θ) (Disp[P ∗(θ), θ])2

+ 2γX(X(P ∗(θ)), θ)β(X(P ∗(θ)), θ)Bias[P ∗(θ), θ]

(106)

as desired.

A.9 Proof of Corollary 3

We first derive the payoff representation of Equation 32. This is a second-order approxima-

tion of the payoff function in Equation 31, reprinted here:

u(pi, P,M) = M
1−σ
σ P η− 1

σ

(
pi −M

χ
σP 1−χ

σ

)
p−η
i (107)

We first calculate

up(pi, P,M) = M
1−σ
σ P η− 1

σ

(
(−η + 1)p−η

i + ηM
χ
σP 1−χ

σ p−η−1
i

)
upp(pi, P,M) = M

1−σ
σ P η− 1

σ

(
η(η − 1)p−η−1

i − η(η + 1)M
χ
σP 1−χ

σ p−η−2
i

) (108)

We define γ(P,M) as the (unique) solution to up(pi, P,M)|pi=γ(P,M) = 0. Re-arranging:

0 = M
1−σ
σ P η− 1

σ

(
(−η + 1)γ(P,M)−η + ηM

χ
σP 1−χ

σ γ(P,M)−η−1
)

0 =
(
(−η + 1) + ηM

χ
σP 1−χ

σ γ(P,M)−1
)

γ(P,M) =
η

η − 1
M

χ
σP 1−χ

σ

(109)

We define α(P,M) = u(γ(P,M), P,M). We first observe that

γ(P,M)−M
χ
σP 1−χ

σ =
1

η − 1
M

χ
σP 1−χ

σ (110)

Then, by direct calculation,

α(P,M) = M
1−σ
σ P η− 1

σ

(
1

η − 1
M

χ
σP 1−χ

σ

)(
η

η − 1

)−η

M−η χ
σP−η+η χ

σ

=
1

η − 1

(
η

η − 1

)−η

M
1−σ+χ(1−η)

σ P η− 1
σ
+(1−η)(1−χ

σ
)

(111)
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as desired

We define β(P,M) = −1
2
upp(pi, P,M)|p=γ(P,M). We first observe that

(η − 1)γ(P,M)− (η + 1)M
χ
σP 1−χ

σ = −M
χ
σP 1−χ

σ (112)

Then, by direct calculation,

β(P,M) = −1

2

(
M

1−σ
σ P η− 1

σ ηγ(P,M)−η−2
(
(η − 1)γ(M,P )− (η + 1)M

χ
σP 1−χ

σ

))
=

1

2

(
M

1−σ
σ P η− 1

σ ηγ(P,M)−η−2M
χ
σP 1−χ

σ

)
=

1

2

(
M

1−σ
σ P η− 1

σ η

(
η

η − 1
M

χ
σP 1−χ

σ

)−η−2

M
χ
σP 1−χ

σ

)

=
η

2

(
η

η − 1

)−(η+2)

M
1−σ−χ(η+1)

σ P−1− 1
σ
+(η+1)χ

σ

(113)

as required. We finally observe that, since λ(M) = 1
π(M)

= KM−δ (where K is a normalizing

constant), we have

β̃(P,M) =
β(P,M)

λ(P,M)
=

η

2

(
η

η − 1

)−(η+2)

M
1−σ−χ(η+1)

σ
+δP−1− 1

σ
+(η+1)χ

σ (114)

We now apply the conditions of Lemma 8 to prove the stated result. We first calculate

that

γP (P,M) =
(
1− χ

σ

) γ(P,M)

P

β̃P (P,M)

β̃(P,M)
= P−1

(
−1− 1

σ
+ (η + 1)

χ

σ

)
(115)

Applying the condition of Equation 99, we get

−(1−
(
1− χ

σ

) γ(P,M)

P
) < P−1

(
−1− 1

σ
+ (η + 1)

χ

σ

)
(p− γ(P,M)) <

(
1− χ

σ

) γ(P,M)

P
(116)

Since χ/σ < 1, we divide all three expressions by
(
1− χ

σ

)
γ(P,M)/P to get

−
(

P

γ(P,M)
(
1− χ

σ

) − 1

)
<

−1− 1
σ
+ (η + 1)χ

σ(
1− χ

σ

) (
p

γ(P,M)
− 1

)
< 1 (117)

as desired.
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We next verify a condition for monotone aggregates. We first calculate:

γP (P,M) =
χ

σ

γ(P,M)

M
,

β̃M(P,M)

β̃(P,M)
= M−1

(
1− σ − χ(η + 1)

σ
+ δ

)
(118)

We then apply Equation 100:

M−1

(
1− σ − χ(η + 1)

σ
+ δ

)
(p− γ(P,M)) <

χ

σ

γ(P,M)

M
(119)

Dividing both sides by γ(P,M)σ/(Mχ), this becomes

1− σ − χ(η + 1) + δσ

χ

(
p

γ(P,M)
− 1

)
< 1 (120)

We finally derive a condition for monotone precision. For this, we need β̃ to decrease in

both M and P . This respectively requires:

0 >
1− σ − χ(η + 1)

σ
+ δ

0 > −1− 1

σ
+ (η + 1)

χ

σ

(121)

Re-arranging these inequalities gives the desired condition,

χ(η + 1) ∈ (1 + γ(δ − 1), 1 + γ) (122)

A.10 Proof of Corollary 4

Proof. We first derive the payoff representation of Equations 41 and 42. To this end, we

begin by deriving the consumer’s choices at t ≥ 1. At t = 1, given savings bi0 from the first

period, each consumer i solves the following program at t = 1:

max
{cit,nit}∞t=1

∞∑
t=1

δt
(
cit −

c2it
2

− χ
n2
it

2

)
∞∑
t=1

cit
Rt

≤ bi0 +
∞∑
t=1

wtnit

Rt

(123)

where bi0 = y0 − ci0 is the agent’s savings from t = 0. This problem is concave in all

arguments. Letting κ denote the Lagrange multiplier in the constraint, we find first-order

conditions δt(1 − cit) = κR−t for each cit and δtχnit = wtκR
−t for each nit. Using δR = 1,

we transform the former into κ = 1− cit for all t. This implies that consumption is constant.
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Plugging this into the labor-supply condition, we derive nit = 1
χ
wt(1 − cit). This is also

constant, if consumption is constant.

We next prove that output is identically equal to yt = ȳ for t ≥ 1 and solve for ȳ. Profit

maximization for the firm implies that the firm elastically demands labor at the wage wt = 1.

Evaluated at this wage, labor demand for each agent i is nit =
1
χ
(1− cit). Integrating both

sides over i, we get nt = 1
χ
(1 − ct). Substituting in the production function and market

clearing, this becomes yt =
1
χ
(1− yt). Therefore, yt = ȳ = 1

1+χ
.

To derive the household’s consumption and labor supply, we return to the budget con-

straint and simplify it by plugging in constant consumption cit = ci1, labor demand, and

wt = 1, and by simplifying the sums:

1

1−R−1
ci1 ≤ Rbi0 +

1

1−R−1

1

χ
(1− ci1) (124)

Rearranging, we write

ci1 ≤
χ

1 + χ

1− δ

δ
bi0 + ȳ (125)

This holds at equality if the right-hand-side is less than 1 (the agent’s bliss point). This is

guaranteed under the maintained assumption that bi0 ≤ c < δ/(1− δ). We finally write the

value function from Equation 123 as V (bi0). And we observe from the envelope theorem that

V ′(bi0) = κ = 1− χ

1 + χ

1− δ

δ
bi0 − ȳ (126)

We now return to the payoff of the consumer at time 0, who chooses consumption given

rational expectations about this future equilibrium path and their future choices. For nota-

tional simplicity, we let ci0 = c and y0 = y. The agent’s payoff is

U(c, y, θd) = (1 + θd)c−
c2

2
− χ

y2

2
+ V (y − c) (127)

Note that all agents are off their labor supply curve and work y labor hours.

We now derive the form in Equation 41. We first observe that Uc(c, y, θd)|c=γ(y,θd) = 0.

Taking the first derivative,

Uc(c, y, θd) = (1 + θd)− c− V ′(y − c)

= (1 + θd)− c−
(
1− χ

1 + χ

1− δ

δ
(y − c)− ȳ

) (128)
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We next use Uc(c, y, θd)|c=γ(y,θd) = 0 and rearrange to write

γ(y, θd) = (1−m)(θd + ȳ) +my (129)

where m = χ(1−δ)
χ+δ

is the marginal propensity to consume

We next observe that −Ucc(c, y, θd) = 2β(y, θd). We calculate, from above,

Ucc = − 1

1−m
, β(y, θd) =

1

2(1−m)
(130)

Moreover, we have β̃(y, θd) = β(y, θd)/λ(y, θd) =
1

2(1−m)
yτ .

We finally observe that U(c, y, θd)|c=γ(y,θd) = α(y, θd). We therefore define

α(y, θd) = (1 + θd)γ(y, θd)−
γ(y, θd)

2

2
− χ

y2

2
+ V (y − γ(y, θd)) (131)

Having verified the payoff representation, we now prove the claim by applying Lemma 8.

First, to show uniqueness, we specialize the condition in Equation 99. We note that

γy(y, θd) = m

β̃y(y, θd)

β̃(y, θd)
= τy−1

(132)

Using these expressions, we derive the condition that, for all y, c ∈ [c, c] and θd ∈ Θd,

−(1−m) <
τ

y
(c− (1−m) (ȳ + θd)−my) < m (133)

We re-arrange this algebraically to

0 < m− τ

y
(c− (1−m) (ȳ + θd)−my) < 1 (134)

Next, to show monotonicity, we observe that β̃θd(y, θd) = 0, and hence Equation 100 reduces

to γθd(y, θd) > 0, which is by assumption when δ > 0 and χ > 0.

Next, to show monotone precision, we observe that β̃(X, θd) =
Xτ

δ
is monotone decreasing

in X, which from Lemma 8 implies that precision in increasing in fundamentals.

Finally, to show efficiency, we plug directly into Equation 101. We first use the definition

of α and the envelope theorem to observe that

αy(y, θd) = Uy(c, y, θd)|c=γ(y,θd) + γc(y, θd)Uc(c, y, θd)|c=γ(y,θd) = Uy(c, y, θd)|c=γ(y,θd) (135)
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We then calculate

Uy(c, y, θd) = −χy + V ′(y − c)

= −χy + 1− χ

1 + χ

1− δ

δ
(y − c)− ȳ

= −χy + 1− m

1−m
(y − c)− ȳ

(136)

where in the last line we use the definition of m.

We next observe that

λy(y, θd) = −τy−τ−1 γy(y, θd) = m β(y, θd) =
1

2(1−m)
(137)

Finally, because of linear aggregation,

Bias[P, θd] =

∫
X
(x− γ(y(P ), θd)) dP (x|θd) = y − γ(y, θd) (138)

Using all of this, we re-write the condition for efficiency (Equation 101) as

−τy−τ−1

∫
X
ϕ(p∗(x | θd)) dx = −χy + 1− m

1−m
(y − γ(y, θd))− ȳ +

m

1−m
(y − γ(y, θd))

= −χy + 1− ȳ

(139)

This re-arranges to

y = ȳ +
τ

χ
y−τ−1

∫
X
ϕ(p∗(x | θd)) dx (140)

When τ = 0, the solution to the fixed-point equation is y = ȳ. When τ > 0, then

y − ȳ =
τ

χ
y−τ−1

∫
X
ϕ(p∗(x | θd)) dx (141)

The right-hand side is weakly positive under the assumption that cognitive costs in each state

are positive. Moreover, an optimal y that solves this condition exists due to Assumption

6 being satisfied. Thus, the introduction of stress weakly increases the optimal level of

output.
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Matějka, F. (2015). Rationally Inattentive Seller: Sales and Discrete Pricing. The Review

of Economic Studies, 83(3):1125–1155.
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Online Appendix

for “Strategic Mistakes” by Flynn and Sastry

B State-Separable vs. Mutual Information Costs

In this Appendix, we compare the strategic mistakes model with the rational inattention

model of Sims (2003). In Sims’ rational inattention model, agents flexibly collect signals

about an unknown state subject to a continuous cost or hard constraint monotone in the

Shannon mutual information between the signal and the state, and then take actions mea-

surable in this signal. Commonly, researchers assume that agents’ information choice is

unobserved and restrict focus to testing the model’s predictions for behavior. This per-

spective is apparent in the early applications of Sims (2003, 2006), in the decision-theoretic

analysis of Caplin et al. (2019, 2022), and in many of the applications surveyed by Maćkowiak

et al. (2020). From this perspective, despite their very different motivations—ours from the

perspective of costly planning, and Sims (2003)’s from the perspective of costly information

acquisition—the strategic mistakes and mutual information models may be each be compa-

rable “candidates” for studying imperfect optimization in a specific equilibrium setting.

We study the similarities and differences between the two models both in theory and

practice. We first present an abstract equivalence result which underscores how the models

may be equivalent for matching observed data (aggregate and cross-sectional) when the prior

distribution is unknown. We then exemplify these differences in a numerical example of a

beauty contest, in which the strategic mistakes model has unique predictions and monotone

comparative statics while the rational inattention model does not.

B.1 Definitions and an Equivalence Result

We first provide abstract conditions under which a version of the strategic mistakes model

makes identical equilibrium predictions to the mutual information model, to build intuition

about the comparability and differences of the two approaches.

All information acquisition models that have a posterior separable representation, includ-

ing mutual information, can be recast as a choice over stochastic choice rules in P subject

to some convex cost functional c (Denti, 2022). The mutual information cost of a stochastic
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choice rule P ∈ P can be decomposed into two terms which we label below:17

cMI(P ) =
∑
Θ

∫
X
p(x|θ) log p(x|θ) dx π(θ)︸ ︷︷ ︸
State-Separable Term

−
∫
X
p(x) log p(x) dx︸ ︷︷ ︸

Cross-State Interactions

(142)

The first term is in fact identical to the state-separable representation (2) with the (quasi-

MLRP) kernel ϕ(p) = p log p. We label the resulting cost function cLSM , or logit strategic

mistakes. In a stochastic choice interpretation, this term encodes the agent’s desire to in-

crease the entropy of the conditional action distributions or play randomly. The second term

equals the entropy of the unconditional action distribution and encodes the agents’ desire

to, on average, anchor toward commonly played actions. This force is absent in the logit

strategic mistakes model, and therefore characterizes cMI model compared to its “strategic

mistakes cousin” cLSM . Moreover, this decomposition makes clear that there is no con-

ceptual difference in modelling any stochastic choice game with mutual information versus

entropic stochastic choice other than that agents have different cost functions, and therefore

preferences.

Matějka and McKay (2015) show that the second term (“anchoring”) has marginally

zero influence on actions when agents’ actions are ex ante exchangeable, or agents play each

action x with equal unconditional probability. From the analyst’s perspective, the key free

parameter for engineering such exchangeability is the prior π(·). We extend this result to

show, constructively, that an analyst free to specify the prior can re-construct the equilibrium

of a logit strategic mistakes model as an equilibrium of an equivalent game with a mutual

information friction provided that a technical condition on payoffs, which ensures that all

actions can be made ex ante equally attractive, holds:

Lemma 9 (Equilibrium Equivalence). Suppose that the action space X is finite. Let Ω =

(P ∗, X̂) be a symmetric equilibrium for the game GLSM = (u(·), λcLSM(·), X(·), π′(·),Θ,X ).

There exists some π′(·) ∈ △(Θ) such that Ω is an equilibrium of GLSM and GMI = (u(·), λcMI(·),
X(·), π′(·),Θ,X ) if and only if the following linear system has a solution for π′ ∈ ∆(Θ):

Ũπ′ =
1

|X | (143)

where 1 is a |Θ| length vector, and Ũ is a |X | × |Θ| matrix with entries:

ũxi,θj =
exp{u(xi, X̂(θj), θj)/λ}∑

xk∈X exp{u(xk, X̂(θj), θj)/λ}
(144)

17In this expression, we use the definition of the marginal distribution p(x) =
∑

Θ p(x|θ)π(θ).
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Proof. To establish that Ω is an equilibrium of the mutual information model, it is sufficient

to establish that P ∗ solves each individual’s optimization problem when they take X̂ as given.

By Corollary 2 in Matějka and McKay (2015), all interior unconditional choice probabilities

p(x) =
∑

θ∈Θ p(x|θ)π(θ) in the mutual information model satisfy the following first-order

condition:

p(x | θ) = p(x) exp{u(x, X̂(θ), θ)/λ}∑
x̃∈X p(x̃) exp{u(x̃, X̂(θ), θ)/λ}

(145)

and the following additional constraint:

∑
θ∈Θ

exp{u(x, X̂(θ), θ)/λ}∑
x̃∈X p(x̃) exp{u(x̃, X̂(θ), θ)/λ}

π′(θ) = 1 (146)

Observe that, if and only if p(x) = p(x′) for all x, x′ ∈ X , then the choice probabilities that

solve (145) are

p(x | θ) = exp{u(x, X̂(θ), θ)/λ}∑
x̃∈X exp{u(x̃, X̂(θ), θ)/λ}

(147)

This would verify that the stochastic choice rule P ∗ is a unique, interior solution to agents’

choice problem. Hence it remains only to verify that p(x) = p(x′) for all x, x′ ∈ X , or

exchangeability, in the agent’s optimal program.

It is straightforward to derive such a condition using (146). Stacking equation (146) over

all interior x ∈ X , we obtain the system:

Ũ({p(x)}x∈X )π′ = 1 (148)

where:

ũxi,θj({p(x)}x∈X ) =
exp{u(xi, X̂(θj), θj)/λ}∑

xk∈X p(xk) exp{u(xk, X̂(θj), θj)/λ}
(149)

and 1 is a |Θ| length vector. Thus, there exists a prior consistent with uniform unconditional

choice p(x) = 1
|X | if and only if the following linear system has a solution probability vector

π′ ∈ ∆(Θ):

Ũπ′ = |X |−11 (150)

where 1 is a |Θ| length vector, and Ũ is as stated in the result. This completes the proof,

with π′ solving the given system supporting the equilibrium under the mutual information

model.

The proof establishes from first-order conditions that (143) corresponds with a flat un-

conditional distribution over actions. The condition ensures that there exists a prior such

63



that all actions yield ex-ante equal payoffs. Heuristically, it is likely to fail if some actions in

X are unappealing regardless of the state or the state space does not have many realizations.

The intuition for the first idea is clearest in the extreme case in which some actions are

dominated by others for all values of X and θ. In this case, there is nothing that an agent

could believe that would ever rationalize playing these actions; and the bridge between the

control-cost model and the rational-inattention model cannot be crossed. The intuition for

the second relates to the fact that our construction varies the prior to make all actions ex

ante equally plausible. If, for instance, there are only two states but N > 2 actions with

very different payoffs from one another in each state, then there is likely no belief that will

make all of the actions seem equally appealing.

This result has two practical implications. First, an analyst who is unsure of the physical

prior distribution can think of the logit strategic mistakes model as a selection criterion for the

mutual information model, across games indexed by different priors and, within each prior, a

potentially non-singleton set of equilibria. This is a general-equilibrium analogue of Matějka

and McKay’s (2015) insight about the relationship between logit and mutual-information

models for individual choice: the former approximates the latter when the analyst does

not take a specific stand on anchoring toward defaults. Second, comparative statics in the

strategic mistakes model which perturb payoffs u(·) or compare across states θ ∈ Θ may be

interpreted, under the conditions of Lemma 9, as comparative statics in a mutual information

model jointly across the aforementioned features and the physical prior and given a specific

equilibrium selection rule.

B.2 Numerically Revisiting The Beauty Contest

We now return to the beauty contest model to illustrate the differences between the strategic

mistakes and mutual information models in a practical scenario that maps to the applications

of Section 4. Because closed-form solutions are not available for equilibrium action profiles

under the mutual information cost, we instead make a feasible approximation of the model

on a gridded action space.18 We will show in this context sharp differences between the pre-

dictions of the logit strategic mistakes and mutual information models regarding equilibrium

multiplicity and comparative statics, and that these stem from the cross-state interactions

embedded in the mutual information cost functional.19

18This is due to two reasons, in our application with quadratic preferences: the lack of a Gaussian prior
and the bounded action space. Moreover, if we had numerically solved a generalized beauty contest with
state-dependent costs of mis-optimization, the non-quadratic payoffs would preclude a closed-form mutual-
information solution even with a Gaussian prior and unbounded state space.

19Note that using logit strategic mistakes will imply that all actions are played with positive probability.
To obtain endogenous consideration sets in the strategic mistakes model, we could have instead used a
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B.2.1 Environment and Solution Method

For the simplest exposition and comparison to existing work, we use a version of our model

that reduces to the linear beauty contest. We study quadratic payoffs of the form,

u(x,X, θ) = α(X, θ)− β(X, θ)(x− γ(X, θ))2 (151)

and set α(X, θ) ≡ 0, eliminating the pure externality; β(X, θ) ≡ 1, giving constant costs of

misoptimization; and γ(X, θ) = (1− r)θ+ rX with r = 0.85.20 The aggregator is the mean.

The state space has two points of support, Θ = {θ0, θ1} = {1.0, 2.0}. The action space X is

approximated with a 40-point grid between lower endpoint x = 0 and upper endpoint x = 3.

We use a flat prior with π(θ0) = π(θ1) =
1
2
. And we scale both logit and mutual information

costs by λ = 0.25.

Let p∗(X̂) ∈ ∆(X )2 return each agent’s (unique) optimal stochastic choice rule, expressed

as pair of probability mass functions, when they conjecture the equilibrium law of motion

X̂ =
(
X̂(θ0), X̂(θ1)

)
.21 As in the proof of our main results, let us define the operator

T : R2 → R2 which constructs essentially the “best response” of aggregates to aggregates by

composing the best response with the aggregator:

TX̂ =
(
X ◦ p∗(θ0; X̂), X ◦ p∗(θ1; X̂)

)
(152)

We define equilibria by first searching over a grid covering [x, x]2 for approximate fixed points

X̂, or low ||TX̂ − X̂||, and then using a numerical fixed-point solving algorithm with fine

tolerance to confirm equilibria.

B.2.2 Equilibrium Uniqueness and the Contraction Map

Figure 1 plots the accuracy of the equilibrium conjecture, ||TX̂ − X̂||, in a heat map or

two-dimensional histogram over the grid of candidate conjectures. Whiter areas denote that

the equilibrium conjecture is closer to the aggregate best response, bluer areas indicate the

opposite, and crosses identify equilibria. The strategic mistakes model, on the left, features a

quadratic kernel.
20Hellwig and Veldkamp (2009) remark that, for dynamic beauty contests meant to mimic price-setting

in New Keynesian models, that r = 0.85 is “commonly used.” Finally, observe that these payoffs are jointly
supermodular in (x,X, θ) but feature bounded complementarity based on the conditions established in the
previous section, provided that r ∈ (0, 1).

21For the logit strategic mistakes model, the optimal action profile is known in closed form. For the mutual
information model, we apply the Blahut-Arimoto algorithm as described in Caplin et al. (2019) which iterates
over the first-order condition for optimal stochastic choice and updates the marginal distribution over actions
until convergence.
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Figure 1: Equilibria in the Beauty Contest
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Note: Each plot is a 2-D histogram of ||TX̂ − X̂||, where || · || indicates the Euclidean norm.
Whiter colors indicate smaller values, and hence “closeness to equilibrium.” The cross marks
represent equilibria, defined such that ||TX̂ − X̂|| < 10−6.

single-peaked surface and a single equilibrium. This is consistent with our theoretical results,

and with the fixed-point condition (152) being a contraction. The mutual information model,

on the right, features a non-monotone surface and 18 confirmed equilibria.

We now deconstruct further the failure of the contraction map argument for the mutual

information model. Recall, in our proof of Theorem 1, that establishing monotonicity and

discounting for the equilibrium operator T required first showing monotone and smooth

comparative statics for the single-agent decision problem. To “test” this in the mutual

information model, we parameterize a path that increases the equilibrium conjecture of X̂

from (0, 0) to one of its equilibrium values.22 Formally, if we label this chosen equilibrium

as X∗
MI = (X∗

MI(θ0), X
∗
MI(θ1)), we consider points indexed by q ∈ [0, 1]:

X̂(q) = (q ·X∗
MI(θ0), q ·X∗

MI(θ1)) (153)

and the aggregate best response TX̂(q). Figure 2 shows each element of TX̂(q) as a function

of q. The first element, plotted in the left panel, is (i) non-monotone and (ii) discontinuous

in the equilibrium conjecture. In the language of the price-setting application, the mutual

information model does not predict that expecting a higher price level increases one’s own

22We pick the equilibrium with the largest value of X̂(θ1)− X̂(θ0).
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Figure 2: Partial Equilibrium Comparative Statics With Mutual Information
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Note: These plots show aggregate best response TX̂ in state θ0 (left pane) and θ1 (right pane)
along the path (153) for the equilibrium conjecture.

price, even though the payoff to setting a higher price has globally increased; and when

prices increase, they may jump suddenly.

To better understand the agent’s behavior along this path, we show in Figure 3 a two-

dimensional histogram of the stochastic choice patterns conditional on each conjecture in-

dexed by q. Equilibrium strategies are mostly supported on either one or two points. This

sparsity of support is formally described by Jung et al. (2019) and Caplin et al. (2019) in

discrete- and continuous-action variants of the mutual information model as a natural con-

sequence of the lowered marginal costs (or, more loosely, “increasing returns to scale”) of

allocating probability mass to frequently played actions. Sparse behavior is a characteristic

feature of the optimal policy in price-setting applications studied by Matějka (2015) and

Stevens (2019). In our example, the optimal policy switches between one and two support

points around q = 0.45. Matějka (2015) refers to such behavior as a bifurcation in the opti-

mal policy. As q increases after the bifurcation point, the optimal policy in Figure 3 pushes

the larger and smaller support points away from one another. This violates monotonicity

in the sense of first-order stochastic dominance, and therefore can lead to a non-monotone

aggregate with respect to some admissible aggregators. Under our chosen aggregator, this

behavior causes X(θ0) to decrease, as evident in the left panel of Figure 2.

Our observation is that this force can support multiple equilibria in coordination games

because it breaks the contractive properties of the equilibrium map. These multiple equi-

libria are not, in our reading, very easily interpretable given that choices have an ordinal

interpretation, payoffs leverage this interpretation in their definition of complementarity, and
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Figure 3: Stochastic Choice Strategies With Mutual Information
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Note: Each slice on the the vertical axis (q) gives the probability distribution of actions in state 0
(left) or 1 (right), represented via a “heat map” (scale on the right). The path of the equilibrium
conjecture corresponds to the same in Figure 2.

agents have a continuum of possible options. This reasoning is quite stark in the price-setting

application which Matějka (2015) and Stevens (2019) study with mutual information. While

it is quite reasonable that a single firm wavers between charging $1.99 and $2.99 for its

product, and indeed Stevens (2019) provides direct evidence for such behavior, it is a much

stronger prediction that an entire (symmetric) economy of firms switches between a coordi-

nated equilibrium of charging ($1.99, $2.99), respectively in each of two states of nature, to

a different equilibrium of charging ($1.98, $3.00).

B.2.3 Equilibrium Comparative Statics

A point emphasized in our theory, and in particular the transition from Theorem 1 (existence

and uniqueness) to Theorem 2 and Theorem 3 (monotone aggregates and precision), was

that the contraction map structure goes hand-in-hand with proving equilibrium comparative

statics. We now illustrate the contrast between comparative statics with strategic mistakes

and information acquisition in our model. We vary the value of the higher state θ1 on the

grid {1.90, 2.00, 2.10} and re-solve for all equilibria of each model. Our main results for the

strategic mistakes model suggest that X∗(θ1) should monotonically increase in that model

while X∗(θ0) stays constant, owing to the separability of decisions by state. For the mutual

information model, there are no equivalent theoretical results.

Figure 4 plots the equilibria of each model as a function of the chosen θ1. In the strategic

mistakes model, we verify the predicted comparative statics across unique equilibria. In
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Figure 4: Equilibrium Comparative Statics in the Beauty Contest

1.0

1.1

X
(θ

0
)

Strategic Mistakes (Logit)

1.0

1.5

Mutual Information

1.9 2.0 2.1
Value of θ1

1.9

2.0

X
(θ

1
)

1.9 2.0 2.1
Value of θ1

1.5

2.0

Note: Each cross mark is an equilibrium, under the strategic mistakes (left) and mutual information
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the mutual information model, we observe non-monotone comparative statics as equilibria

move in and out of the set. Thus, while a mutual-information model may be an appealing

laboratory to study specific behaviors like discrete pricing, it may not lend itself to straight-

forward comparative statics analysis conditional on this feature outside of specific numerical

calibrations.23

C State-Separable Costs in Binary-Action Games

In this Appendix, we adapt our analysis to study binary-action games, which are also com-

mon for modeling coordination phenomena in macroeconomics and finance. We first provide

results ensuring existence, uniqueness and monotone comparative statics. We next apply

our results to study the “investment game,” introduced by Carlsson and Van Damme (1993)

and studied recently by Yang (2015) and Morris and Yang (2022). Bridging our continuous-

action and binary-action analyses, we finally discuss how the the action space can have a large

bearing on our model’s uniqueness predictions. This may be an important consideration for

researchers when the choice of action space is primarily based on analytical convenience and

23Of course whether this is a “bug” or instead a “feature,” reflecting the unstable coordinational nature of
activities like price-setting, is an open question that merits additional research. Stevens (2019), for instance,
uses a model of coarse pricing with mutual-information costs to match micro-level evidence on pricing
strategies and macroeconomic dynamics for aggregates. The micro-economic calibration builds the case that
non-uniqueness and ambiguous comparative statics may indeed be features of the “correct” descriptive model
of this setting.
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not descriptive realism regarding adjustment on an extensive margin.

C.1 Existence, Uniqueness, and Comparative Statics

We now study the same environment as Section 2 with the sole change that agents now have a

binary action set X = {0, 1}.24 Let p(θ) denote the probability that a given agent plays action

1 in state θ. It is without loss of generality to restrict to the aggregator X(p(θ)) = p(θ),

since transformations of this aggregate can be applied within payoffs, and we adopt this

convention throughout. Given a conjecture for the law of motion of the aggregate p̂ and

state θ ∈ Θ, we define the cost-adjusted benefit of playing action 1 over action 0 as:

∆ũ(p̂(θ), θ) ≡ u(1, p̂(θ), θ)− u(0, p̂(θ), θ)

λ(p̂(θ), θ)
(154)

We let ∆ũX denote this function’s derivative in the first argument.

We now provide an existence and uniqueness result. To do so, we place the following

regularity condition on the stochastic choice functional:25

Assumption 7. The kernel of the cost functional satisfies the Inada condition limx→0 ϕ
′(x) =

−∞. Moreover, ϕ′′ is globally strictly convex.26

This rules out stochastic choice rule’s being concentrated on only one of the two actions

in any state. The result follows:27

Proposition 2. Suppose that ϕ satisfies assumption 7 and ∆u(p, θ) is continuously differ-

entiable in its first argument. There exists an equilibrium. All equilibria are symmetric. A

sufficient condition for there to be a unique p∗(θ) is that:

max
p∈[0,1]

∆ũX(p, θ) < 2ϕ′′
(
1

2

)
(155)

A sufficient condition for there to be a unique p∗ is that (155) holds for all θ ∈ Θ.

Proof. Under Assumption 7, for any θ, we have that p∗(θ) ∈ (0, 1). Thus equilibrium is

characterized by the first-order condition obtained by moving probability of playing zero to

24Naturally, all integrals are now replaced with summations and density functions by mass functions.
25For existence, this can be weakened in the obvious way: the objective need only be continuous. We

present results with this stronger assumption for brevity.
26Note that, in view of the Inada condition, it is impossible for ϕ′′ to be globally strictly concave.
27One can extend this result in the obvious way beyond the differentiability assumption to allow for

Lipschitz continuous ∆u(p, θ). Naturally, the key property being ruled out is a sudden threshold around
which the gains from playing action 1 change discontinuously.
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playing one. Thus, the condition characterizing equilibrium is given by:

∆u(p∗(θ), θ) = λ(p∗(θ)) (ϕ′(p∗(θ))− ϕ′(1− p∗(θ))) (156)

To prove uniqueness for a given θ it is sufficient to prove that the minimal slope of the RHS

exceeds the maximal slope of the LHS:

max
p∈[0,1]

∆ũX(p, θ) < min
p∈[0,1]

ϕ′′(p) + ϕ′′(1− p) (157)

If ϕ′′ is strictly convex, then the problem is solved by solving the FOC:

ϕ′′′(p) = ϕ′′′(1− p) (158)

As ϕ′′ is strictly convex, ϕ′′′ is strictly increasing and is therefore invertible. Thus the unique

solution is p = 1
2
and the minimized value is 2ϕ′′(1

2
). Applying this argument state by state

yields the global condition.

Condition (155) checks the maximum value of complementarity (left-hand-side) against

the lowest value for the slope of the marginal cognitive cost of investing (right-hand-side),

which is realized at p = 1
2
.28 We will provide a simple graphical intuition for this condition

in the upcoming example.

It is moreover simple to establish when the aggregate p∗(θ) increases in θ. As in our main

analysis, this simply requires supermodularity of payoffs in (x, p, θ), or that higher actions

by others and states are complementary with playing x = 1:

Assumption 8 (Joint Supermodularity). The cost-adjusted benefit of playing action 1 over

action 0 satisfies, for all p′ ≥ p, θ′ ≥ θ:

∆ũ(p′, θ′) ≥ ∆ũ(p, θ) (159)

Proposition 3. Suppose that Assumptions 7 and 8 hold, and that the inequality in Equation

155 holds for all θ ∈ Θ so that there is a unique equilibrium p∗. The unique equilibrium p∗(θ)

is monotone increasing in θ.

Proof. Under Assumption 7, the equilibrium is characterized by Equation 156. Under the

assumption that the inequality in Equation 155 holds, there is a unique solution p∗(θ) for all

θ ∈ Θ. Note that that this unique equilibrium occurs when ∆ũ(p, θ) intersects ϕ′(p)−ϕ′(1−p)

28That p = 1
2 is such a point can be derived by noting the symmetry of the state-separable cost around

p = 1
2 and the convexity of ϕ.
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from above. Moreover, by Assumption 8 we know that ∆ũ(p, θ) is increasing in (p, θ). Thus,

when we take θ′ ≥ θ, we know that the unique intersection occurs for p∗(θ′) ≥ p∗(θ).

Analogous results with general information acquisition or stochastic choice, by contrast,

require more extensive analysis (see, e.g., Yang, 2015; Morris and Yang, 2022).

C.2 Application: The Investment Game

We now apply these results in a variant of the binary-action investment game introduced

by Carlsson and Van Damme (1993), which models coordination motives in financial spec-

ulation. Each agent chooses an action x ∈ {0, 1}, or “not invest” and “invest.” The state

of nature θ ∈ Θ ⊆ R scales the desirability of investing independent of other conditions.

Agents’ payoffs depend on the action, the total fraction of investing agents, and the state of

nature separably and linearly:

u(x, p, θ) = x(θ − r(1− p)) (160)

where r ≥ 0 scales the degree of strategic complementarity between investment decisions.

It is straightforward to derive the following fixed-point equation that describes the equi-

libria of the model when ϕ satisfies the Inada condition in Assumption 7 and λ(p, θ) ≡ 1:

θ + rp(θ)− r = ϕ′(p(θ))− ϕ′(1− p(θ)) (161)

Equilibrium is guaranteed to be unique by Proposition 3 provided that the following condition

holds relating strategic complementarity r with the second derivative of the kernel ϕ:

r < 2ϕ′′
(
1

2

)
(162)

This condition is independent of the state space Θ or the prior. But it does depend on the

scale and character of cognitive costs through ϕ′′ (1
2

)
.

Condition (162) admits the following interpretation about uniqueness with vanishing costs

under arbitrary functional forms. For any positive (but arbitrarily small) level of strategic

complementarity, and with a sufficiently rich state space, there will be multiple equilibria

for a sufficiently small cost of stochastic choice:

Corollary 5. Consider a family of investment games {Gλ : λ ∈ (0, L]} with fixed payoffs,

action space, and state space, each with the re-scaled cost functional for some common ϕ̂
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Figure 5: Multiplicity in the Investment Game
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Note: The dotted line is the marginal benefits of investing more often as a function of others’
investment probability, or the right-hand side of (161). The blue and orange lines are the marginal
costs of investing more often under respectively more and less severe costs of stochastic choice.
Each intersection is an equilibrium.

that satisfies Assumption 7, i.e., ϕλ = λϕ̂. Then, for all

λ > L∗ :=
r

2ϕ̂′′
(
1
2

) (163)

game Gλ has a unique action profile (p∗(θ))θ∈Θ. Conversely, when λ < L∗, there exists at

least some θ∗ ∈ R such that the equilibrium of Gλ is not unique if θ∗ ∈ Θ.

Proof. Recall that for any ϕλ (owing to ϕ̂ satisfying Assumption 7), we have that:

θ + rp∗(θ)− r = ϕ′
λ(p

∗(θ))− ϕ′
λ(1− p∗(θ)) (164)

Consider state θ∗ = r
2
. In this state, we have that p∗(θ∗) = 1

2
is an equilibrium. Moreover, see

that the slope of the LHS in p is given by r and the slope of the RHS in p at p = 1
2
is given by

2λϕ̂′′(1
2
). Hence, when λ < r

2ϕ̂′′( 1
2
)
, we have that the slope of the LHS exceeds the slope of the

RHS. But we know that the RHS is continuous on (0, 1) and that limp→1 ϕ
′(p)− ϕ′(p) = ∞.

Thus, the RHS must intersect the LHS from below for some other p ∈ (1
2
, 1). Thus, in state

θ∗, if λ < r

2ϕ̂′′( 1
2
)
there are multiple p∗(θ) that can arise in equilibrium. Consequently, if

θ∗ ∈ Θ and λ < r

2ϕ̂′′( 1
2
)
, we have that equilibrium is not globally unique. The final claim that

we have global uniqueness for λ > r

2ϕ̂′′( 1
2
)
follows immediately from Theorem 2.

The result contrasts with Corollary 1 which showed limit uniqueness in the generalized

beauty contest. We will further discuss this issue in Section C.4.

To illustrate the uniqueness result, we consider a specialization of the model in which
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the kernel function is ϕ̂(x) = x log x. In this case, ϕ′′(0.5) = 2 and the cost threshold

for uniqueness is L∗ = r
4
.29 Figure 5 illustrates the scope for multiplicity in a benchmark

parameter case of this logit model. We fix r = 0.50, and θ = 0.25, the state such that a 50%

aggregate investment corresponds with zero payoff. The dotted black line is the “Marginal

Benefit,” which corresponds with the left-hand-side of (161). The blue and orange lines are

the the “Marginal Cost” of increasing the investing probability, or the right-hand-side of

(161), with respectively higher and lower values of λ or costs of attention. By construction,

there is an equilibrium with p = 1
2
for any value of λ. Whether or not there are additional

equilibria corresponding to more “confident” play, or p closer to 0 or 1, depends on the

slope of these marginal costs. When λ is high (blue line), it is costly to play more certainly

and hence there is only one intersection with the dotted line. When λ is low (orange line),

marginal costs cross marginal benefits from above at p = 0.5. This visualizes a violation of

the condition in Proposition 2. As a result there are two more “confident” equilibria near

p = 0 and p = 1.

The right-hand-side of the confident-wavering condition (162) is a well-defined moment

which researchers may try to calibrate via laboratory experiments and could interpret in our

model without taking a stand on the entire ϕ function. In this way, (162) can be read as a

sufficient statistic gauge of the potential for multiplicity and fragility that relies only on one

informative aspect of the underlying stochastic choice model.

C.3 State-Separable vs. Mutual Information Costs

In the vein of our main analysis’ comparison of beauty contests with strategic mistakes and

mutual information, we now compare the investment game under logit strategic mistakes

with the equivalent game under mutual information, as studied by Yang (2015). Observe first

that the mutual information model does not always admit an interior solution. Intuitively,

if agents place an arbitrarily high prior weight on fundamentals always being very high or

very low, they may decide to unconditionally invest or dis-invest without learning anything.

These scenarios are ruled out by respectively assuming Eπ [exp{λ−1θ}] > exp{λ−1r} and

Eπ [exp{−λ−1θ}] > 1. No analogue of either is possible in the strategic mistakes model with

logistic choice which always features positive probability of playing both actions in all states,

so these conditions a fortiori rule out an application of Lemma 9. Nonetheless, after ruling

out these cases, we can show the following:

29This is exactly the condition obtained by Yang (2015) for this game with information acquisition costs
proportional to mutual information. This foreshadows a deeper connection which we will explore in the next
subsection.
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Corollary 6. Compare identical investment games GLSM and GMI, distinguished by their

costs of stochastic choice, scaled by a common scalar λ. Assume

1. (Interiority) Eπ [exp{λ−1θ}] > exp{λ−1r} and Eπ [exp{−λ−1θ}] > 1

2. (Global uniqueness) r < 4λ

Each game has a unique equilibrium (pLSM(·), pMI(·)). Moreover,
pLSM(θ) = pMI(θ),∀θ if

∑
Θ pMI(θ) π(θ) = 1/2,

pLSM(θ) < pMI(θ),∀θ if
∑

Θ pMI(θ) π(θ) > 1/2,

pLSM(θ) > pMI(θ),∀θ if
∑

Θ pMI(θ) π(θ) < 1/2.

(165)

Proof. It follows from Proposition 2 of Yang (2015), that when Eπ [exp{λ−1θ}] > exp{λ−1r}
and Eπ [exp{−λ−1θ}] > 1, the equilibria of the game with mutual information cost are

characterized by:

θ + rpMI(θ)− r = λ

[
ln

(
pMI(θ)

1− pMI(θ)

)
− ln

(
p̄MI

1− p̄MI

)]
(166)

for all θ ∈ Θ where p̄MI =
∑

Θ pMI(θ)π(θ). It moreover follows from Proposition 3 of Yang

(2015) that when r < 4λ, this model features a unique equilibrium. Recall that when r < 4λ

our model with entropic stochastic choice also features a unique equilibrium and this is

characterized by:

θ + rpL(θ)− r = λ

[
ln

(
pL(θ)

1− pL(θ)

)]
(167)

Moreover, when p̄MI > 1
2
, we have that ln

(
p̄MI

1−p̄MI

)
> 0, when p̄MI = 1

2
, we have that

ln
(

p̄MI

1−p̄MI

)
= 0 and when p̄MI < 1

2
, we have that ln

(
p̄MI

1−p̄MI

)
< 0. It is then immediate that

pL(θ) < pMI(θ) when p̄MI > 1
2
, pL(θ) = pMI(θ) when p̄MI = 1

2
, and pL(θ) > pMI(θ) when

p̄MI < 1
2
.

Conditional on interiority, anchoring in the mutual information model distorts the choice

probabilities but perhaps more surprisingly is completely separable from the game’s unique-

ness properties. More formally, in binary-action games with mutual information, the only dif-

ference between the strategic mistakes model with entropy is that log-odds ratio log
(

p(θ)
1−p(θ)

)
in state θ ∈ Θ differs across the models by a state-independent additive constant. In our

earlier graphical analysis, this can be seen as a vertical shift of the marginal cost curve.

Thus, our confident wavering argument applies directly to the mutual information model

and offers an alternative window into the main result of Yang (2015). This separability of
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anchoring from uniqueness properties with binary actions may be an independently useful

insight in other models with mutual information cost.

C.4 Discussion: Global vs. Local Mistakes

Binary-action settings are sometimes used as a convenient metaphor for underlying envi-

ronments with many possible actions—for instance, simplifying financial speculation as the

choice between extremes of investing and dis-investing instead of a continuous portfolio

choice. Our analysis reveals that, in models of stochastic choice, the restriction to two ex-

treme actions may significantly change the character of the game because it removes the pos-

sibility of local substitution of actions. The binary-action game allows for “global mistakes,”

like fully investing when fully disinvesting is instead optimal, that impose discontinuously

different externalities and can support multiple equilibria. Our benchmark continuous-action

model implies by contrast that agents make “local mistakes” like substituting an optimal

action with an alternative that is sub-optimal but nearby in the action space. Whether an

analyst should use the binary-action or continuous-action model then depends on the prob-

lem at hand and how seriously they take the prediction of global substitution relative to the

potential loss in tractability.

Our results also contrast with those in the global games literature in which there is, in-

stead of stochastic choice, vanishing private measurement error in observing the fundamental

(Carlsson and Van Damme, 1993; Morris et al., 1995; Frankel et al., 2003). When combined

with the earlier observation linking strategic mistakes with cross-sectional heterogeneity in

payoff functions (Section 2.1), our results draw a sharp distinction between measurement er-

rors for payoffs (studied here, which do not yield limit uniqueness) and measurement errors

for fundamentals (studied in the aforementioned literature, which do yield limit uniqueness).

One way of thinking about the difference is that the “contagion” argument formalized in

the above references, which shows that having dominant actions in specific states iteratively

implies unique rationalizable actions in neighboring states, has no analogue in the present

model with no interim beliefs or cross-state reasoning. A different interpretation is that the

mere observation that agents have trembling hands is not sufficient to imply the sharp and

specific predictions of canonical global games, a point also made by Yang (2015) and Morris

and Yang (2022).
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