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Abstract

Modern theories of aggregate supply are built on the foundation that firms set prices

and commit to producing whatever the market demands. We remove this strategic

restriction and allow firms to choose supply functions, mappings that describe the prices

charged at each quantity of production. Theoretically, we characterize firms’ optimal

supply function choices in general equilibrium and study the resulting implications for

aggregate supply. Aggregate supply flattens under lower inflation uncertainty, higher

idiosyncratic demand uncertainty, and less elastic demand. Quantitatively, our theory

explains the flattening of aggregate supply during the Great Moderation and steepening

during the 1970s and 2020s.
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1 Introduction

At the heart of modern models of aggregate supply are monopolistic firms that make decisions

under uncertainty. It is common to restrict these firms’ supply decisions to an important but

specific class: setting a price and committing to produce whatever the market demands. For

example, price-setting is assumed in classic models of aggregate supply based on exogenous,

infrequent adjustment (Taylor, 1980; Calvo, 1983), menu costs (Barro, 1972; Caplin and

Spulber, 1987; Golosov and Lucas, 2007), and limited information (Mankiw and Reis, 2002;

Woodford, 2003a; Hellwig and Venkateswaran, 2009). The price-setting assumption is also

part of the foundation of the ubiquitous New Keynesian framework (Woodford, 2003b) and

its modern incarnations (e.g., Wolf, 2023; Dávila and Schaab, 2023).

However, as has long been recognized (see e.g., Grossman, 1981b), price-setting is not

typically an optimal way for a firm to behave and is, at some level, ad hoc. Why should firms

not be able to raise their prices when goods are flying off the shelves? Of course, in practice,

they can and do: firms use temporary sales and surge pricing to navigate changing demand

conditions. Such “dynamic pricing” policies, in which prices explicitly respond to demand,

are commonly used in many sectors (see Den Boer, 2015, for a review), including electricity

(Joskow and Wolfram, 2012), gasoline (Borenstein and Shepard, 1996), air travel (Williams,

2022), retail (e.g., grocery stores with sales), ride-sharing (e.g., Uber), e-commerce (e.g.,

Amazon), food (e.g., Wendy’s), and entertainment (e.g., Disney World or Ticketmaster).

In this paper, we remove external restrictions on the nature of firms’ pricing strategies

and instead allow firms to choose any supply function: a mapping that describes the price

charged at each quantity of production.1 Supply function choice is a standard approach in

microeconomic theory to model firms’ ability to adjust decisions to realized demand with-

out imposing ad hoc strategic restrictions, while remaining consistent with a foundation

of information, contracting, or organizational frictions (e.g., Grossman, 1981b; Hart, 1985;

Klemperer and Meyer, 1989; Vives, 2011, 2017; Pavan et al., 2022; Rostek and Yoon, 2023).

However, supply function choice has not yet been studied in general equilibrium, macroeco-

nomic models. Our goal is to understand how this enriched model of pricing and production

at the microeconomic level affects our understanding of the macroeconomy.

We find that introducing supply functions in an otherwise standard monetary business

cycle model yields an aggregate supply curve with an endogenous slope. That is, the relative

response of the price level and real output to an aggregate demand shock depends on the

interaction between uncertainty and market structure, precisely because these forces affect

1This is different from nonlinear pricing (as recently studied in a macroeconomic context by Bornstein
and Peter, 2022), whereby firms transact different quantities at different prices. A supply function specifies
the uniform price that everyone pays as a function of the total quantity sold.
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firms’ optimal supply strategies. Specifically, we show that aggregate supply flattens, or

aggregate demand shocks have bigger real and smaller nominal effects, under lower inflation

uncertainty, higher idiosyncratic demand uncertainty, and less elastic demand. Quantita-

tively, our model generates variation in the slope of aggregate supply that is consistent

with empirical evidence in the US. Thus, we find that supply functions provide a realistic,

tractable, and quantifiable foundation for a state-dependent aggregate supply curve.

Supply Function Choice of a Single Firm. We begin our analysis in partial equilib-

rium. We study a firm that faces a constant-price-elasticity demand curve and operates

a constant-returns-to-scale production function. It has log-normal uncertainty about its

competitors’ prices, demand, productivity, input prices, and the stochastic discount factor.

Given its beliefs, the firm chooses a supply function f : R2
++ → R. This function

defines the firm’s supply curve as the locus of prices (p) and quantities (q) that solves

f(p, q) = 0. Because the market clears, the firm produces and prices where the market

demand curve intersects its supply curve. Internalizing this, the firm chooses its optimal,

non-parametric supply function to maximize its expected real profits under the stochastic

discount factor. This interpretation is in line with the ECON 101 notion of a supply curve:

a systematic relationship between the price that firms charge and the quantity that they

produce. We show formally that this model is isomorphic to one in which firms can condition

their prices on realized demand. This interpretation links our model theoretically to the

notion of rational expectations equilibrium (Lucas, 1972; Grossman, 1981a) and practically

to the aforementioned examples of dynamic pricing. The model moreover nests two strategic

restrictions imposed by previous studies. Price-setting is nested by functions of the form

f(p) = 0, or perfectly elastic supply. Quantity-setting is nested by functions of the form

f(q) = 0, or perfectly inelastic supply (e.g., as in Jaimovich and Rebelo, 2009; Angeletos

and La’O, 2010, 2013; Benhabib et al., 2015). By relaxing strategic restrictions on firms, we

allow firms to choose potentially preferable strategies.

We solve in closed-form for the optimal supply function and show that it is endogenously

log-linear: log p = α0 + α1 log q. Thus, the firm’s behavior in response to changes in market

demand is described by its optimally chosen inverse supply elasticity, α1: the percentage by

which the firm increases prices in response to a one percent increase in production. In turn,

this elasticity depends on the firm’s price elasticity of demand (which measures its market

power in our model) and its relative uncertainty about demand, competitors’ prices, and

real marginal costs. These relationships arise because uncertainty and market power shape

firms’ relative desires to hedge against different types of shocks.

Three comparative statics are particularly important for our macroeconomic analysis.

First, higher uncertainty about firm-level demand pushes toward a lower α1, or firms behav-
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ing more like price-setters. The limit case of price-setting perfectly insulates firms against

demand shocks, as the optimal response of a firm to changing demand conditions is to set

its relative price equal to a constant markup on its real marginal cost. Second, higher un-

certainty about competitors’ prices pushes toward a higher α1, or firms’ behaving more like

quantity-setters. The limit case of quantity-setting perfectly insulates firms against shocks

to competitors’ prices as it allows the firm’s relative price to adjust perfectly in response

to such changes. Third, a lower elasticity of demand pushes toward a lower α1, or firms

behaving more like price-setters. More market power, thus defined, reduces the cost to the

firm of setting the “wrong” price.

General Equilibrium: From Supply Functions to Aggregate Supply. To study

the aggregate implications of supply-function choice, we next embed our framework in a

monetary business-cycle model with incomplete information (Woodford, 2003a; Hellwig and

Venkateswaran, 2009).

We first characterize aggregate outcomes given fixed firm-level supply functions. This al-

lows us to isolate the importance of supply functions for shock transmission, before studying

equilibrium choice of supply functions. We show that, in the unique log-linear equilibrium,

the price level and real output follow an aggregate supply and aggregate demand represen-

tation. There is a well-defined “slope of aggregate supply,” which also corresponds to the

relative responses of the price level and real output to an aggregate demand (money supply)

shock. This slope depends critically on the slope of firms’ supply functions.

Aggregate supply is inelastic—or, money is neutral—if and only if firms are quantity-

setters. Aggregate supply is maximally elastic—or, money is as non-neutral as possible—if

and only if firms are price-setters. These results are disquieting—the specification of price-

setting or quantity-setting has substantial implications for basic macroeconomic properties

of the model, such as whether money has real effects. A key benefit of the supply function

approach is that the analyst does not inadvertently impose restrictions on firms’ supply

function choices, but allows these choices to be made optimally. Indeed, between those

extremes, the slope of aggregate supply is monotone increasing in the slope of firm-level

supply.

Finally, a lower elasticity of demand flattens the aggregate supply curve. This effect is

present as long as firms are not pure price-setters. Intuitively, a higher elasticity of demand

increases how much a given change in the aggregate price level moves any given firm’s demand

curve.

We next characterize how the slope of aggregate supply is endogenously determined,

via the fixed point relating macroeconomic uncertainty to firms’ supply-function choice.

This reveals feedback loops: uncertainty affects supply functions, which affects the slope of
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aggregate supply, and in turn shapes macroeconomic uncertainty.

For the sharpest closed-form illustration of these ideas, we first derive the slope of ag-

gregate supply under a parameter restriction that balances strategic complementarity (from

aggregate demand externalities) with substitutability (from wage pressure). This slope de-

creases in firms’ relative uncertainty about idiosyncratic demand shocks vs. the money

supply. For example, an economy with more hawkish monetary policy, defined as a less

volatile money supply, features a flatter aggregate supply curve and therefore an endoge-

nously smaller effect of aggregate demand shocks on the price level. In that sense, this

economy has “more stable prices” for two reinforcing reasons. First, there are fewer aggre-

gate demand shocks. Second, firms respond to more stable prices by flattening their supply

curves, which endogenously reduces the responsiveness of prices to aggregate demand shocks.

This observation is consistent with the narrative that more hawkish monetary policy in the

United States (e.g., during and after the tenure of Paul Volcker) achieved price stability

by flattening the aggregate supply curve. Moreover, this implies the following trade-off for

policymakers: maintaining a high degree of monetary discretion, which induces greater mon-

etary uncertainty, endogenously makes monetary policy less effective at influencing the real

economy.

An economy with higher idiosyncratic demand variation also features a flatter aggre-

gate supply curve. Combining this with the empirical observation that firms’ idiosyncratic

uncertainty rises substantially in recessions (Bloom et al., 2018), our theory offers the follow-

ing resolution to the puzzle of “missing disinflation” during the Great Recession: aggregate

supply itself endogenously flattened in the face of a large jump in microeconomic uncertainty.

Away from the special case of balanced strategic interaction, the model makes richer

predictions in which the elasticity of demand and the volatility of productivity shocks also

affect the slope of aggregate supply. Our quantitative exercise will suggest that both forces

play an important role in determining the slope of aggregate supply in the US.

Quantitative Analysis. We finally study the model’s implications for the slope of ag-

gregate supply in the United States. To do so, we estimate time-varying uncertainty for

macroeconomic aggregates using a Generalized Autoregressive Conditional Heteroskedastic-

ity (GARCH) model on aggregate time series for output, the price level, and productivity.

We combine these estimates with the model to generate a historical time series for the slope

of aggregate supply in the US. This allows us to study whether the model’s predictions for

the state-varying slope of aggregate supply are quantitatively reasonable.

We find that the model helps explain three empirically documented phenomena related

to the changing slope of aggregate supply in the US that existing models have struggled to

rationalize. First, the model explains a quantitatively significant portion of the steeping of
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aggregate supply from the 1960s to the 1970s and the flattening of aggregate supply from

the 1970s to the Great Moderation (as estimated by, e.g., Ball and Mazumder, 2011). The

changes are primarily driven by changes in inflation uncertainty. When inflation uncertainty

is low, as during the Great Moderation, firms choose flatter supply functions (i.e., closer

to price-setting). This flattening at the micro level translates to a flatter aggregate supply

curve. Second, our model rationalizes why aggregate supply remained flat during the Great

Recession, a period characterized by a spike in real, rather than nominal, uncertainty. Thus,

our model is consistent with both the missing disinflation (Coibion and Gorodnichenko, 2015)

and missing inflation (Bobeica and Jarociński, 2019) puzzles: inflation did not fall during the

Great Recession and rise thereafter by as much as standard macroeconomic models imply.

Finally, the model explains the steepening of aggregate supply in the post-Covid period (as

has been estimated by Cerrato and Gitti, 2022) as a consequence of a surge in inflation

uncertainty. This implies both that post-pandemic aggregate demand shocks may have had

large effects on prices and that contractionary monetary policy might be able to rein in

inflation with relatively low costs to output and usher in a “soft landing”.

Related Literature. Our methodological contribution is to derive aggregate supply in

a business-cycle model from a foundation of supply function competition. Supply function

competition has been extensively studied in microeconomic theory, industrial organization,

and finance (Grossman, 1981b; Hart, 1985; Klemperer and Meyer, 1989; Kyle, 1989; Vives,

2017; Pavan et al., 2022; Rostek and Yoon, 2023). We contribute to this theoretical literature

by analytically characterizing equilibrium supply functions with several new features: non-

quadratic preferences; imperfect substitutability; multiple, correlated sources of uncertainty;

and, most importantly, general equilibrium interactions in both input and product markets.

Moreover, by using estimated macroeconomic volatility to place discipline on the set of possi-

ble information structures that are consistent with the observed data, our sufficient statistics

approach allows us to make sharp quantitative statements about the macroeconomic implica-

tions of supply functions. This approach allows us to overcome the Bergemann et al. (2021)

critique that supply functions have few predictions that hold over all information structures.

The closest analysis in the macroeconomics literature on optimal supply decisions is per-

formed by Reis (2006), who compares the polar extremes of price-setting and quantity-setting

for a rationally inattentive firm in partial equilibrium. Our analysis goes beyond Reis’ by

studying completely flexible supply schedule choice and removing all ad hoc strategic restric-

tions on firms’ choices. Moreover, we characterize general equilibrium, as opposed to Reis’

(2006) partial equilibrium analysis.2 This allows us to study the equilibrium relationship

2In an earlier version of this project (Flynn et al., 2024), we studied the restricted problem of prices vs.
quantities choice in general equilibrium.
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between supply function choice, macroeconomic dynamics, and the slope of aggregate sup-

ply. In so doing, we also allow for multiple, correlated shocks to firms. The main upshot

from this perspective is our new theory of aggregate supply and its implications for macro

dynamics.

Our finding that uncertainty shapes the slope of aggregate supply is shared with the clas-

sic “islands model” analysis of Lucas (1972, 1973, 1975). A shared methodological premise

is that economic agents act on what they learn from endogenous objects, as in the broader

literature on rational expectations equilibrium (Grossman, 1981a; Grossman and Stiglitz,

1980). Our ultimate results for the slope of the aggregate supply curve differ substantially

for two reasons. First, we study producers with market power (monopolistic competition),

consistent with modern macroeconomic theory and evidence, instead of price-taking produc-

ers in competitive markets. Second, the inference problem that links uncertainty to supply

decisions in our model arises for a different reason, without reference to the migration or

physically separated markets hypothesized by Phelps (1970). Rather, firms use the demand

for their product as a noisy signal to infer their optimal price.

Our work is also distinguished from a literature that has pursued other avenues to recon-

cile Lucas’ insights with non-competitive markets. Unlike Woodford (2003a), which restricts

firms to price-setting, we allow firms to choose flexible schedules. This restores the spirit of

Lucas’ insight that firms can learn from market conditions in rational expectations equilib-

rium. Our analysis also suggests that existing conclusions about the link between information

frictions and monetary non-neutrality are sensitive to strategic restrictions on firms: for ex-

ample, if firms were restricted to set quantities in our model, money would be neutral despite

information frictions. Hellwig and Venkateswaran (2009) share our premise of allowing firms

to learn from demand conditions, but do not study the static fixed point that supply func-

tions generate between firms’ decisions and market information. This two-way feedback is

at the core of our mechanism and our predictions for how information and market power

shape the slope of aggregate supply.3

Outline. Section 2 solves for the firm’s optimal supply function in partial equilibrium.

Section 3 introduces the monetary business cycle model in which we embed supply func-

tions. Section 4 characterizes equilibrium with supply function choice and shows how supply

function choices affect aggregate supply. Section 5 quantifies the model’s predictions for the

slope of aggregate supply. Section 6 concludes.

3Lucas and Woodford (1993) and Eden (1994) study markets with ex ante capacity investment and
sequential transactions as a way to model learning from demand conditions. These authors also do not
study the static fixed-point between uncertainty and market information.
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2 Supply Function Choice in Partial Equilibrium

In this section, we introduce our model of supply function choice for a single firm making

decisions under uncertainty. We show that supply function choice is formally equivalent

to allowing firms to learn from their demand and update their pricing strategies accord-

ingly. Our main result in this section shows that optimal supply functions are log-linear and

characterizes their slope in terms of firms’ uncertainty and the elasticity of demand.

2.1 The Firm’s Problem

Set-up. A firm produces output q ∈ R+ via a constant-returns-to-scale production tech-

nology using a single input x ∈ R+:

q = Θx (1)

where Θ ∈ R++ is the firm’s Hicks-neutral productivity. The firm can purchase the input at

price px ∈ R++. The firm faces a constant-elasticity-of-demand demand curve given by:

p

P
=
( q

Ψ

)− 1
η

(2)

where p ∈ R+ is the market price, Ψ ∈ R++ is a demand shifter, P ∈ R++ is the aggregate

price level, and η > 1 is the price elasticity of demand. We interpret the elasticity of demand

as an (inverse) measure of market power: when η is high, the quantity demanded is more

sensitive to the price. The firm’s profits are priced according to a real stochastic discount

factor Λ ∈ R++. For simplicity, we define the firm’s real marginal cost as M = P−1Θ−1px.

At the beginning of the decision period, the firm is uncertain about demand, costs,

others’ prices, and the stochastic discount factor (SDF). Specifically, they believe that the

state (Ψ,M, P,Λ) follows a log-normal distribution with mean µ and variance Σ.4 The firm’s

payoff is given by its expected real profits (revenue minus costs), as priced by the real SDF:

E
[
Λ
( p

P
−M

)
q
]

(3)

where E [·] is the firm’s expectation given some joint beliefs about (Λ, P,M, p, q).

The firm commits to implementing price-quantity pairs described by the implicit equation

f(p, q) = 0 where f : R2
++ → R. We will refer to f as the supply function. Price-setting

is nested as a case in which f(p, q) ≡ fP (p). Quantity-setting is nested as a case in which

f(p, q) ≡ fQ(q). More generally, we allow plans to be given by any non-parametric function

f , allowing for possible non-monotonicity and discontinuities.

4Of course, M is log-normal so long as P , Θ, and px are log-normal.
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After choosing a supply function f , and following the realization of Ψ and P , the firm

produces at a point where f intersects the demand curve. That is, the market clears. Toward

making this rigorous, we define the nominal demand state z = ΨP η and rewrite the demand

curve as q = zp−η. Thus, having set f and following the realization of z, the firm’s price

is given by some solution p̂ to the equation f(p̂, zp̂−η) = 0 with the realized quantity being

q̂ = zp̂−η. We assume that the firm chooses the profit-maximizing selection from the set of

solutions if there are many and does not produce if there is no solution. Given a supply

function f , we let H(f) be the induced joint distribution over (Λ, P,M, p, q) given the

firm’s prior beliefs. The firm’s problem of choosing an optimal supply function is therefore

equivalently stated as either of the following maximization problems:

sup
f :R2

++→R
EH(f)

[
Λ
( p

P
−M

)
q
]

⇐⇒ sup
p̂(z)

E

[
Λ

(
p̂(z)

P
−M

)
zp̂(z)−η

∣∣∣∣∣z
]

for all z ∈ R+ (4)

While mathematically equivalent, these two formulations of the problem provide two different

economic intuitions for how the firm behaves. Under the first formulation, the interpretation

is that the firm chooses its supply curve ex ante, knowing that it will price and produce where

its supply curve meets the demand curve. Under the second formulation, the interpretation

is that the firm prices in the interim: it is as if the firm sees the state of its demand, updates

its beliefs, and then sets its optimal price.

In Figure 1, we visually illustrate how different supply functions translate into different

outcomes for the firm. In the first row, we show each supply function (solid black line) and

two demand curves, corresponding to a high demand realization z1 (red dashed line) and a

low demand realization z0 (blue dotted line). The dots indicate the intersections of supply

and demand, or realized quantity-price pairs in these states. In the second row, we illustrate

the induced joint distribution of prices and quantities. Panel (a) shows a “price-setting”

supply function, f(p, q) = 1− p, which allows only quantities to vary with realized demand.

This might describe a firm that responds to low demand by producing less and responds to

high demand by producing more, allowing the market to clear at a fixed price. The “quantity-

setting” policy (panel (b)), f(p, q) = 1−q, does the opposite: it might describe a retailer that

aggressively decreases the price of low-demand goods and increases the price of high-demand

goods to fix the quantity sold. The third supply function (panel (c)), f(p, q) = 1− p
q
, allows

both prices and quantities to increase with higher demand. This might describe a retailer

with less extreme dynamic pricing: high-demand states have higher prices and volumes,

and low-demand states have lower prices and volumes. To evaluate a supply function, the

firm evaluates its payoffs given the induced joint distribution of prices and quantities with

competitors’ prices, real marginal costs, and the stochastic discount factor.
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Figure 1: An Illustration of Supply-Function Choice
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Note: The columns correspond to different supply functions. The top row illustrates ex post market
clearing for two realizations of the demand curve. The bottom curve illustrates the induced joint
distribution of quantities and prices given log-normal uncertainty about z.

Interpreting Supply Functions. The ex ante interpretation of a supply function is fa-

miliar from ECON 101: it is the price that the firm plans to charge given any level of

production. At a basic level, setting a supply function allows the firm to change its price

and level of production as a function of the demand that it faces. This allows our model

to formalize the idea that a producer may want to raise their price and increase production

when demand is high and goods are flying off the shelves and lower their price and reduce

production when demand is weak.

The interim interpretation of a supply function is that the firm learns from its demand

and chooses its optimal behavior incorporating all of this possible information. This is

exactly the idea that underpins “learning from prices” in rational expectations equilibrium

(REE), as studied (among others) by Lucas (1972) and Grossman (1981a). To assume that

the firm does not learn from this information and update its behavior is to assume that it

either disregards valuable information—which is in principle reasonable, but at odds with

the modern paradigm of studying REE—or that firms for some exogenous reason cannot

incorporate this information into their decisions. Even in models with positive but finite

adjustment costs, this second assumption is violated. Thus, the only tenable arguments

against allowing for supply functions are that firms do not learn in the manner required by
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REE or that adjustments are infinitely costly.

The interim perspective makes clear that supply functions have an appealing property:

they do not require any commitment on the part of the firm. Indeed, as the interim perspec-

tive makes clear, the defining property of an optimal supply curve is that the firm will ex

post, i.e., upon observing demand, actually wish to charge the price and supply the quantity

specified by the optimal supply curve. By contrast, the standard price-setting assumption

does require a commitment on the part of the firm to ignore the information that it learns

from the state of demand and not change prices in response to demand conditions.

As a practical matter, there are many examples in which firms implement supply sched-

ules outright precisely because they learn from demand and seek to adjust prices to maximize

profits by using this information (see e.g., Farias and Van Roy, 2010; Dutta and Mitra, 2017).

This is common for many goods and services that feature “dynamic pricing,” which include

but are not limited to: electricity (Joskow and Wolfram, 2012), air travel (Williams, 2022),

gasoline (Borenstein and Shepard, 1996), e-commerce (e.g., Amazon), ride-sharing (e.g, Uber

and Lyft), food (e.g., Wendy’s), entertainment and sports events (e.g., Ticketmaster), and

theme parks (e.g., Disney World).

Moreover, demand-responsive pricing is no new innovation. Posted prices have not been

the norm throughout human history and only became widespread after the invention of

the price tag in the mid-19th century (Phillips, 2012). The practical importance of supply

functions has long been recognized by industrial organization economists. Writing in 1989,

Klemperer and Meyer provide two particularly concrete examples of firms that de facto

implement supply schedules. In the first, they describe how service providers (specifically,

management consultants) vary the prices that they charge in response to the quantity of

services provided.5 In the second, they describe how airlines use computer software to put

seats on discount depending on how many are currently sold. In this case, the firm explicitly

uses technology to implement a supply schedule. Of course, even if firms do not implement

supply schedules explicitly, they may still implicitly use demand to inform their optimal

pricing strategy and therefore act as if they are choosing a supply function.

In summary, as REE and non-infinite adjustment costs imply that firms must choose

supply functions, we argue that there is a strong theoretical basis for their study. Moreover,

5They write: “If a consulting firm sticks to a fixed rate per hour, it is fixing a price (perhaps subject to a
capacity constraint). In fact, however, even when firms quote fixed rates, the real price often varies. When
business is slack, more hours are worked on projects than are reported, but when the office is busy, marginally
related training, travel time, and the time spent originally may all be charged to the client. Top management
in effect commits to a supply function by choosing the number of employees and the rules and organizational
values that determine how both the real price and the number of hours supplied adjust to demand—some
firms hold the real price very close to the quoted one by choosing very rigid rules about accurately reporting
the hours worked to the client, while others allow individual managers far more discretion.”
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as the pricing decisions of many firms are transparently and explicitly designed as supply

functions, there is a strong practical basis for studying supply functions.

2.2 The Optimal Supply Function

We now study the globally optimal supply function, the solution to Problem 4. The follow-

ing result characterizes the firm’s optimal policy in closed form and allows us to illustrate

comparative statics in the extent of uncertainty and the price elasticity of demand.

Theorem 1 (The Optimal Supply Function). Any optimal supply curve is almost everywhere

given by:

f(p, q) = log p− α0 − α1 log q (5)

where the slope of the optimal price-quantity locus, α1 ∈ R, is given by:

α1 =
ησ2

P + σM,Ψ + σP,Ψ + ησM,P

σ2
Ψ − ησM,Ψ + ησP,Ψ − η2σM,P

(6)

Proof. See Appendix A.1.

To provide intuition for this result, it is helpful to first sketch its proof. As observed above

(Equation 4), the problem of choosing an optimal supply function ex ante can be recast as

a problem of choosing price-quantity pairs (p(z), q(z)) that are indexed by the realization

of the nominal demand state z = ΨP η and are such that the market clears: (p(z), q(z)) =

(p(z), zp(z)−η). Intuitively, when setting a supply schedule, the firm anticipates that it will

produce where the demand curve hits the supply function. Thus, as the demand curve is

indexed by z, it is as if the firm chooses a z-contingent price-quantity plan. Under price-

setting, for instance, the price is fixed at p̄ ∈ R++ and the quantity adjusts to clear the

market, (p(z), q(z)) = (p̄, zp̄−η). Similarly, under quantity-setting, the quantity is fixed at

q̄ ∈ R++ and the price adjusts to clear the market, (p(z), q(z)) = (z1/η q̄, q̄). In a general

problem of supply function choice, the only difference is that the contingency of prices and

quantities on realized demand, which was also present under both price-setting and quantity-

setting, is chosen optimally to maximize payoffs.

A necessary condition for optimality is that, for any given realization z = t, there is

no local benefit to changing the price p(t). Taking a first-order condition of the firm’s

maximization problem implies that the following equations must hold for almost all t ∈ R++:

p(t) =
η

η − 1

E[ΛM | z = t]

E[ΛP−1 | z = t]
and q(t) = tp(t)−η (7)
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This resembles the standard optimality condition for monopolistic price-setting (“markup

over marginal cost”), with the key difference that it conditions on nominal demand z. Out-

comes under optimal rules therefore differ from optimal outcomes under price-setting (or

quantity-setting) due to the firm’s ability to make inferences about the stochastic discount

factor, real marginal costs, and the price level. We are then able to solve for the optimal

supply function in closed form, despite the infinite-dimensionality of Problem 4, because

Equation 7 reduces to a log-linear relation between p and q given lognormal beliefs.

It remains to explain why the optimal inverse supply elasticity takes the form given in

Equation 6. This specific form arises because α1 is the relative rate at which the firm wants

log prices and log quantities to increase with the nominal demand state log z:

α1 =
d log p

d log z

/
d log q

d log z
=

Cov[log z, log p∗∗]

Cov[log z, log q∗∗]
(8)

where p∗∗ and q∗∗ are the optimal ex post prices and quantities that the firm would set with

full information:

p∗∗ =
η

η − 1
MP and q∗∗ =

(
η

η − 1

)−η
z

(MP )η
(9)

An econometric metaphor illustrates why this is the optimal way to set α1. By Equation

8, the firm’s optimal policy is equivalent to running the following two-stage least squares

(2SLS) regression: the firm estimates how its optimal price should change with its optimal

quantity, using the nominal demand state z as an instrument for the optimal quantity. The

supply function is steep (|α1| is large) if nominal demand predicts large movements in the

ex post optimal price. In the 2SLS metaphor, this corresponds to a large coefficient in the

“reduced form” regression of p∗∗ on z. The supply function is flat (|α1| is small) if nominal

demand predicts large movements in the ex post optimal quantity. In the 2SLS metaphor,

this corresponds to a large coefficient in the “first stage” regression of q∗∗ on z.

Turning to how the nature of uncertainty affects the firm’s optimal inverse supply elastic-

ity, we begin by focusing on the case in which the firm’s supply schedule is upward-sloping.

This occurs if 0 ≤ Cov[log z, log(MP )] ≤ 1
η
Var[log z]: high demand predicts that nomi-

nal costs are higher, but not too much higher. In this case, greater price-level uncertainty

(σ2
P increases) steepens the optimal supply schedule. Intuitively, not knowing the prices of

your competitors makes more aggressive dynamic pricing (i.e., a strategy closer to quantity-

setting) attractive because this allows one’s relative price to adjust ex post. On the other

hand, greater demand uncertainty (σ2
Ψ increases) flattens the optimal supply schedule. Intu-

itively, demand uncertainty favors a strategy closer to a fixed price as it allows production to

12



adjust to accommodate greater demand. Finally, greater covariances between real marginal

costs and demand and real marginal costs and the price level increase the firm’s inverse

supply elasticity. Intuitively, when these covariances increase, the firm expects to produce

more exactly when it is more costly. Thus, the firm optimally sets a steeper supply schedule

to avoid over-producing in response to changes in demand.

We finally observe that a positively sloped supply function is not guaranteed: if nominal

costs move sufficiently with nominal demand, then a monopolist may prefer a downward

sloping supply function in order to hedge against high costs in high-demand states. In

practice, however, we will find no empirical evidence for this condition, and it remains a

theoretical curiosity.

The Elasticity of Demand and Supply Functions. The elasticity of demand plays two

roles in determining the optimal (inverse) elasticity of supply. The first relates to payoffs :

when η is high, ex post optimal quantities are more sensitive to changes in nominal marginal

costs (holding fixed nominal demand). Intuitively, when goods are more substitutable, the

firm’s optimal policy depends dramatically on whether its marginal costs are above or below

others’ prices. The second role relates to information: when η is high, nominal demand

contains relatively more information about the price level P and less about real demand Ψ.

When studied in our general-equilibrium environment (Sections 3 and 4), these forces will

open up the possibility that the slope of aggregate supply systematically depends on the

extent of market power in the macroeconomy.

In general, the interaction of these two forces can make the optimal supply function

steepen or flatten when η increases. But, below, we describe a sufficient condition under

which a greater elasticity of demand induces steeper supply:

Corollary 1 (The Elasticity of Demand and Optimal Supply). A sufficient condition for

greater market power to lower the inverse supply elasticity, or ∂α1

∂η
> 0, is that each of the

following three inequalities holds:

α1 ≥ 0, σM,P ≥ 0, 2ησM,P + σM,Ψ ≥ σP,Ψ (10)

Proof. See Appendix A.2.

The force of these conditions is to restrict the extent to which high nominal demand

predicts low marginal costs. In this case, the dominant logic is the following. When demand

is highly sensitive to relative prices, an upward-sloping aggregate supply function better

allows a firm to index its prices relative to its nominal costs. As discussed earlier, this allows
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the firm to better hedge its risks from setting the “wrong” price when products are very

substitutable.

Later, in our quantitative analysis (Section 5), we find that the condition of Corollary

1 always holds in US data since 1960 as long as η > 3. Thus, the empirically relevant case

appears to be that a lower elasticity of demand flattens firms’ optimal supply function.

Pure Price- and Quantity-Setting Obtain in Extreme Limits. The previous result

and discussion make clear that pure price-setting (in which the price is unresponsive to

demand while the quantity produced is) and quantity-setting (in which the quantity produced

is unresponsive to demand while the price charged is) are “edge cases” in the larger space

of supply functions. Moreover, they are almost never optimal. We observe below that they

are obtained in the limiting cases of extreme demand or price-level uncertainty:

Corollary 2 (A Foundation for Price-Setting and Quantity-Setting). The following state-

ments are true:

1. As σ2
P → ∞, |α1| → ∞ and the optimal plan converges to quantity-setting.

2. As σ2
Ψ → ∞, α1 → 0 and the optimal plan converges to price-setting.

Thus, focusing on price- and quantity-setting is justified when and only when one source

of risk is dominant. In a macroeconomic environment, however, we may expect all sources

of risk to be present in comparable orders of magnitude. In such a scenario, the extreme

policies may perform poorly, for both the firm and the economic analyst.

Extensions: Multiple Inputs, Decreasing Returns to Scale, Monopsony, and Be-

yond Isoelastic Demand. We have made many simplifying assumptions for expositional

simplicity. In Appendix B, we generalize this analysis in two directions. First, we allow for a

Cobb-Douglas production technology with multiple inputs, decreasing returns to scale, and

convex costs of hiring additional inputs (capturing monopsony). We show that all of these

forces change the analysis solely by introducing a single composite parameter that aggre-

gates the decreasing returns and monopsony forces across inputs. We show in Proposition

4 that the optimal supply function remains optimally log-linear and uncertainty enters in a

similar way. Moreover, as is perhaps intuitive, decreasing returns to scale and monopsony

power (that may arise because of adjustment costs in production, for instance) both reduce

the optimal supply elasticity of the firm and push the firm toward quantity-setting. Second,

we allow for demand that is not iso-elastic and separates the firm’s own-price elasticity of

demand from the firm’s cross-price elasticity of demand. We solve for the optimal supply

curve in this case in Proposition 5. We show that uncertainty enters in a similar way but

the optimal supply curve ceases to be log-linear as the optimal markup is endogenous to the

scale of production. Under all such extensions, the qualitative insights remain the same.
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3 Supply Functions in a Macroeconomic Model

We now embed supply-function choice in a monetary macroeconomic model. We other-

wise use intentionally standard microfoundations (see, e.g., Woodford, 2003b; Hellwig and

Venkateswaran, 2009; Drenik and Perez, 2020). These microfoundations will allow for a

closed-form analysis and highlight the core economics of supply functions without any ap-

proximations.6 In this context, we will be interested in understanding three things: (i) how

the microeconomic inverse supply elasticity maps into the elasticity of aggregate supply,

(ii) how equilibrium macroeconomic dynamics endogenously influence the optimal microeco-

nomic supply elasticity, and (iii) how these two channels interact to determine equilibrium

macroeconomic dynamics.

3.1 Households

Time is discrete and infinite t ∈ N. There is a continuum of differentiated goods indexed by

i ∈ [0, 1], each of which is produced by a different firm.

A representative household has standard (Hellwig and Venkateswaran, 2009; Golosov and

Lucas, 2007) expected discounted utility preferences with discount factor β ∈ (0, 1) and per-

period utility defined over consumption of each variety, Cit; holdings of real money balances,
Mt

Pt
; and labor effort supplied to each firm, Nit:

E0

[ ∞∑
t=0

βt

(
C1−γ

t

1− γ
+ ln

Mt

Pt

−
∫
[0,1]

ϕitNit di

)]
(11)

where γ ≥ 0 indexes income effects in both money demand and labor supply and ϕit > 0

is the marginal disutility of labor supplied to firm i at time t, which is an IID lognormal

variable with time-dependent variance, or log ϕit ∼ N(µϕ, σ
2
ϕ,t). The consumption aggregate

Ct is a constant-elasticity-of-substitution aggregate of the individual consumption varieties

with elasticity of substitution η > 1:

Ct =

(∫
[0,1]

ϑ
1
η

itc
η−1
η

it di

) η
η−1

(12)

where ϑit is an IID preference shock that is also lognormal with time-dependent variance, or

6In Section 4.5, we describe how to perform the same analysis in a large family of linearized macroeconomic
models following McKay and Wolf (2023).
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log ϑit ∼ N(µϑ, σ
2
ϑ,t). We also define the corresponding ideal price index:

Pt =

(∫
[0,1]

ϑitp
1−η
it di

) 1
1−η

(13)

Households can save in either money or risk-free one-period bonds Bt (in zero net supply)

that pay an interest rate of (1 + it). The household owns the firms in the economy, each of

which has profits of Πit. Thus, the household faces the following budget constraint at each

time t:

Mt +Bt +

∫
[0,1]

pitCit di = Mt−1 + (1 + it−1)Bt−1 +

∫
[0,1]

witNit di+

∫
[0,1]

Πit di (14)

where pit is the price of variety of variety i and wit is a variety-specific nominal wage.

The aggregate money supply follows an exogenous random walk with drift µM and time-

dependent volatility σM
t :

logMt = logMt−1 + µM + σM
t εMt (15)

where the money innovation is an IID random variable that follows εMt ∼ N(0, 1). So that

interest rates remain strictly positive, we assume that 1
2
(σM

t )2 ≤ µM for all t ∈ N.

3.2 Firms

The production side of the model follows closely the model from Section 2. Each consumption

variety is produced by a separate monopolist firm, also indexed by i ∈ [0, 1]. Each firm

operates a production technology that is linear in labor:

qit = ζitAtLit (16)

where Lit is the amount of labor employed, ζit is IID lognormal with time-dependent volatility

σζ,t, or log ζit ∼ N(µζ , σ
2
ζ,t), and logAt follows an AR(1) with time-varying volatility σA

t :

logAt = ρ logAt−1 + σA
t ε

A
t (17)

where the productivity innovations are IID and follow εAt ∼ N(0, 1). When the firm sells

output at price pit and hires labor at wage wit, its nominal profits are given by Πit =

pitqit − witLit. Since firms are owned by the representative household, their objective is to

maximize expectations of real profits, discounted by a real stochastic discount factor Λt.

Thus, the firm’s payoff is Λt

Pt
Πit.
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At the beginning of time period t, firms first observe At−1 and Mt−1. Firms also receive

private signals about aggregate productivity sAit and the money supply sMit :

sAit = logAt + σA,s,tε
s,A
it

sMit = logMt + σM,s,tε
s,M
it

(18)

where the signal noise is IID and follows εs,Ait , εs,Mit ∼ N(0, 1). Firms are uncertain about the

idiosyncratic productivity shock zit, demand shock ϑit, and labor supply shock ϕit.
7

3.3 Markets and Equilibrium

In each period, conditional on the aforementioned information set, firms choose a supply

function. As in Section 2, firms make this decision under uncertainty about demand, costs,

and the stochastic discount factor. But, as will become clear, this uncertainty is now partially

about endogenous objects. After firms make their choices, the money supply, idiosyncratic

demand shocks, and both aggregate and idiosyncratic productivity are realized. Finally, the

household makes its consumption and savings decisions and any prices that were not fixed

adjust to clear the market. Formally, we define an equilibrium as follows:

Definition 1 (Supply-Function General Equilibrium). An equilibrium is a collection of vari-

ables {
{pit, qit, Cit, Nit, Lit, wit,Πit}i∈[0,1], Ct, Pt,Mt, At, Bt, Nt,Λt

}
t∈N

and a sequence of supply functions
{
fit : R2

++ → R
}
i∈[0,1],t∈N such that, in all periods:

1. All firms choose their supply function fit to maximize expected real profits under the

household’s stochastic discount factor.

2. The household chooses consumption Cit, labor supply Nit, money holdings Mt, and bond

holdings Bt to maximize their expected utility subject to their lifetime budget constraint,

while Λt is the household’s marginal utility of consumption.

3. Money supply Mt and productivity At evolve exogenously via Equations 15 and 17.

4. Firms’ and consumers’ expectations are consistent with the equilibrium law of motion.

5. The markets for the intermediate goods, final good, labor varieties, bonds, and money

balances all clear.

We will also often be interested in describing equilibrium dynamics conditional on a

(potentially suboptimal) supply function for firms. Formally, these temporary equilibria are

equilibria in which we do not require statement (1) of Definition 1.

7It is not important that firms are fully uninformed about these quantities. The model’s predictions
would be identical if firms also received noisy signals about their idiosyncratic shocks.
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4 Supply Function Choice and Aggregate Supply

We now study the model’s equilibrium predictions, focusing on the equilibrium determination

of the aggregate supply curve. We proceed in three steps. First, we solve for all equilibrium

conditions except for the firm’s supply-function decision. Second, we show that, fixing any

log-linear supply schedule, the economy admits a unique log-linear equilibrium that has a

simple Aggregate Supply and Aggregate Demand representation. Importantly, the slope

of aggregate supply depends on the slope of firm-level supply, in conjunction with other

parameters. Third, we combine this with our solution for optimal supply schedules from

Theorem 1 and fully characterize equilibrium in terms of a single, scalar fixed-point equation

for the firm-level supply elasticity. We study how strategic interactions, the elasticity of

demand, and the combination of microeconomic demand uncertainty alongside aggregate

productivity and monetary uncertainty affect the equilibrium aggregate supply elasticity.

Finally, we show how supply function choice can be tractably incorporated in a larger class

of dynamic general equilibrium models.

4.1 Firms’ Uncertainty in Equilibrium

We begin by deriving the general-equilibrium analogs of the four objects that were central

to the firm’s problem in Section 2: firm-specific demand shocks, firm-specific marginal costs,

the price level, and the stochastic discount factor. We do so by deriving the household’s Euler

equations for bonds, money, and labor supply. We summarize the results of this below:

Proposition 1 (Firm-Level Shocks in General Equilibrium). In any temporary equilibrium,

demand shocks, aggregate price shocks, stochastic discount factor shocks, and marginal cost

shocks follow:

Ψit = ϑitCt , Pt =
it

1 + it
C−γ

t Mt , Λt = C−γ
t , Mit =

ϕitC
γ
t

zitAt

(19)

where it is a deterministic function of only exogenous parameters that we provide in the

Appendix.

Proof. See Appendix A.3.

Each of these expressions is intuitive given the general equilibrium structure of the model.

First, the firm’s demand shock is the product between its idiosyncratic demand shock and ag-

gregate demand, which is familiar from Blanchard and Kiyotaki (1987). Second, the demand

for real money balances is decreasing in the interest rate as this determines the opportunity

cost of holding money (which itself depends on the future path of monetary volatility, the
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drift of the money supply, and the household’s discount factor). Moreover, this demand

is increasing in the household’s level of consumption because of an income effect, which is

governed by the curvature of consumption utility γ. Intuitively, when consumption utility

has greater curvature, income effects in money demand are larger and money demand is

more responsive to changes in consumption. Thus, consumption responds less to real money

balances when γ is large. Third, the SDF is simply the marginal utility of consumption.

Finally, the real marginal cost of firms is increasing in the level of consumption because of

the same income effect, and decreasing in the productivity of the firm.

The uncertainty the firm faces in light of Proposition 1 concerns endogenous objects.

This introduces strategic uncertainty (i.e., payoff-relevant uncertainty about other firms’

choices).8 Moreover, firms’ uncertainty is correlated across variables due to macroeconomic

linkages in the product, money, and labor markets.

An important technical implication of Proposition 1 is that, if Ct is log-normal, then so

too is (Ψit, Pt,Λt,Mit). This follows from the fact that all four expressions are log-linear

and all other fundamentals (At,Mt, ϑit, ϕit, zit) are log-normal by assumption. Therefore, if

we can find that Ct is log-normal in equilibrium, our Theorem 1 can be directly applied to

determine the optimal supply function in general equilibrium in our fully non-linear setting.

We will call an equilibrium in which logCt is linear in (logAt, logMt) a log-linear equilibrium.

4.2 From Supply to Aggregate Supply with Fixed Functions

We start by assuming that firms’ exogenously set log-linear supply functions:

log pit = α∗
0t,i(α1,t) + α1,t log qit (20)

where α1,t ∈ R is a fixed parameter and α∗
0t,i(α1,t) is the profit-maximizing “intercept”

conditional on this slope.9 This optimal intercept depends on the slope α1,t, the firm’s

beliefs, and realized demand, but not (independently) on the realized quantity. This has two

purposes. First, this assumption allows us to explore what happens in temporary equilibrium

when firms use a given supply function. This is useful for understanding what strategic

restrictions on firms’ pricing strategies (e.g., exogenously imposing price-setting) imply for

macroeconomic dynamics. Second, this assumption is our “guess” about what firms’ supply

function will be in equilibrium, which we will later “verify” as correct. This allows us to

8One interesting implication of Proposition 1 is that nominal wages, wit =
it

1+it
ϕitMt, provide information

only about exogenous objects. A stronger implication is that a model in which firms draw inferences from
both output-market prices and input-market prices has identical predictions to our studied model.

9We will later verify that all firms use a common slope in equilibrium. In light of Theorem 1, this is
because all firms are exposed to uncertainty in the same way.
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understand the ultimate macroeconomic implications of optimal supply function choice.

Conditional on these supply functions, we guess and verify that there exists an equilibrium

in which aggregate consumption and the price level are log-linear in aggregate shocks:

logPt = χ0,t(α1,t) + χA,t(α1,t) logAt + χM,t(α1,t) logMt

logCt = χ̃0,t(α1,t) + χ̃A,t(α1,t) logAt + χ̃M,t(α1,t) logMt

(21)

To this end, we define the posterior weight on firms’ signals of productivity and the aggregate

money supply as, respectively, κA
t =

(
1 +

(
σA,s,t/σ

A
t

)2)−1

and κM
t =

(
1 +

(
σM,s,t/σ

M
t

)2)−1

.

Moreover, define the slope of supply functions in terms of log zit = η logPt + logΨit as:
10

ω1,t =
α1,t

1 + ηα1,t

(22)

We now characterize equilibrium macroeconomic dynamics with fixed supply functions.

We show that macroeconomic dynamics in log-linear general equilibrium are equivalent to

those that would be generated by an Aggregate Demand and Aggregate Supply (AD/AS)

model, in which productivity shocks shift the AS curve and money shocks shift the AD curve.

Critically, the slope of aggregate supply depends on the slope of firms’ supply schedules.

Theorem 2 (Equilibrium and AD/AS Representation). There is a unique log-linear tempo-

rary equilibrium. The behavior of aggregate prices and output in this temporary equilibrium is

equivalent to those generated by the following “Aggregate Demand/Aggregate Supply” model:

logPt = log

(
it

1 + it

)
− ϵDt log Yt + logMt (AD)

logPt = log P̄t + ϵSt log Yt + δt logAt (AS)

where the inverse supply and demand elasticities are given by:

ϵSt = γ
κM
t + ω1,t

γ
(1− κM

t )

(1− ω1,tη)(1− κM
t )

and ϵDt = γ (23)

and the interest rate it, the intercept for the price level log P̄t, and the partial equilibrium

effect of productivity shocks δt do not depend on (logPt, log Yt, logMt, logAt).
11

Proof. See Appendix A.4.

10So everything remains well defined, we will impose that ω1,t ̸=
(
η − 1

γ

)
(1− κx

t ) for x ∈ {A,M}. Our

analysis verifies that these values of ω1,t cannot occur in log-linear equilibrium (see the proof of Theorem 3).
11See Appendix A.4 for explicit formulae for these terms.
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In this representation, the aggregate demand curve combines the Euler equations for

money and bonds with the transversality condition and implies that: (i) the interest rate is

a function of exogenous parameters and (ii) aggregate consumption has an elasticity of 1/γ

to changes in real money balances. Thus, the “inverse elasticity of aggregate demand” in

our model is γ. The aggregate supply curve describes the equilibrium relationship between

aggregate output and aggregate prices by aggregating firms’ microeconomic pricing and

production decisions conditional on a fixed inverse supply elasticity.

We illustrate this representation in Figure 2. An “aggregate demand shock,” an increase

of the money supply by logM1 − logM0 = ∆ logM > 0, shifts up the AD curve. This has

an effect of ∆logM
ϵD+ϵS

on real output and ϵS ∆logM
ϵD+ϵS

on the price level. In particular, the price

effect is larger and the quantity effect is smaller if ϵS is large. This calculation also makes

clear that ϵS measures the relative effect of an aggregate demand shock on the price level

versus real output.

The Propagation of Demand Shocks. To obtain more intuition for the propagation of

shocks via firms’ supply schedules, we expand the response of the price level to a money shock

into a partial equilibrium effect and a series of higher-order general equilibrium effects:12

∆ logP

∆ logM
=

ϵSt
ϵDt + ϵSt

=

(
κM
t +

ω1,t

γ
(1− κM

t )

)
︸ ︷︷ ︸

Partial Equilibrium

×
∞∑
j=0

(
ω1,t

(
η − 1

γ

)
(1− κM

t )

)j

︸ ︷︷ ︸
General Equilibrium

(24)

To understand the partial equilibrium (PE) effect, observe that when M goes up by

1%, all else equal, real money balances increase by 1%. From the household’s optimality

conditions, this increases their consumption demand by ϵD
−1

t % = 1
γ
%. This has two effects.

First, the firm experiences a 1
γ
% demand shock. As the firm has inverse supply elasticity of

ω1,t, this leads the firm to increase its prices by ω1,t

γ
%. Second, from the household’s labor

supply condition, real marginal costs increase by γ × 1
γ
% = 1%. As the firm wishes to set

its relative price equal to a constant markup on its real marginal costs, this makes the firm

want to increase prices by 1%. As they have already increased their prices by ω1,t

γ
%, they

would achieve this 1% total price increase by increasing prices by 1 − ω1,t

γ
% in response to

the 1% increase in real marginal costs. However, as firms receive imperfect signals of the

money supply, their posterior means after the 1% shock increase in money and real marginal

12This expression is derived by multiplying the numerator and denominator of ϵSt /(ϵ
D
t + ϵSt ) by

(1 − ω1,tη)(1 − κM
t ) and expanding it into a geometric summation. The summation only converges

when
∣∣ω1,t (η − 1/γ) (1− κM

t )
∣∣ < 1. Our fixed point arguments establish that the claimed formulae hold

more generally whenever
∣∣ω1,t (η − 1/γ) (1− κM

t )
∣∣ ̸= 1. The proof of Theorem 3 shows the final case of∣∣ω1,t (η − 1/γ) (1− κM

t )
∣∣ = 1 cannot happen in equilibrium.
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Figure 2: An Aggregate Supply and Demand Representation
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Note: An aggregate supply and demand illustration of dynamics after a shock of size ∆ logM to
the money supply (see Theorem 2).

costs increase by only κM
t %. Thus, on average, they respond to the increase in marginal

costs by raising prices by κM
t × (1− ω1,t

γ
)%. Thus, in partial equilibrium, the firms increase

their prices on average by ω1,t

γ
+ κM

t × (1− ω1,t

γ
)% = κM

t + ω1,t

γ
(1− κM

t )%, which leads to an

equal-sized effect on the aggregate price level.

To understand the general equilibrium effects, consider a 1% increase in the aggregate

price level. This has three effects. First, as others’ prices have risen by 1%, the firm

experiences an η% demand shock. Second, as the price level has risen by 1%, real money

balances fall and consumption demand falls by 1
γ
%. Together, given the inverse supply

elasticity of ω1,t, these effects lead firms to increase their prices by ω1,t × (η − 1
γ
)%. Third,

from the households’ labor supply condition, the fall in real consumption demand induces

a reduction in real marginal costs by 1
γ
× γ% = 1%. With perfect information of the 1%

increase in the price level, the firm would wish to reduce its price by ω1,t × (η − 1
γ
)%, since

this would imply that its relative price (which would fall by 1%) is maintained as a constant

markup over real marginal costs (which has fallen by 1%). However, as firms are imperfectly

informed of the monetary shock, if a money shock induced a 1% increase in prices, then they

would only on average perceive a κM
t % increase in the price level. Thus, they reduce their

prices by κM
t × ω1,t × (η − 1

γ
)%. In total, out of a monetarily induced 1% increase in the

aggregate price level, the average increase in firms’ prices is therefore ω1,t×(η− 1
γ
)×(1−κM

t )%.

Applying this logic to the initial κM
t + ω1,t

γ
(1 − κM

t )% increase in prices from the PE effect

and iterating it to all subsequent price increases in GE yields Equation 24.

22



A novel implication of our model is that the extent of general-equilibrium strategic

complementarity hinges critically on the slope of the supply function. Starkly, general-

equilibrium interactions would be entirely absent (i.e., pricing decisions would be neither

complements nor substitutes) if price-setting (ω1,t = 0) were exogenously assumed: the PE

effect would be κM
t % and the GE effect would be 0%. Through this lens, predictions for

complementarity in benchmark price-setting (Woodford, 2003a) and quantity-setting (An-

geletos and La’O, 2010) models are joint predictions of the economic environment and an

exogenous restriction on firms’ strategy space.

The Propagation of Supply Shocks. While our study is primarily focused on predic-

tions for the aggregate supply curve and transmission of demand shocks, our model also

makes predictions for the transmission of supply shocks. In the AD/AS representation, a

positive shock to logAt corresponds to an outward shift of the AS curve, which raises real

output and lowers the price level. While the relative effect on the price level and on real

output is fixed at ϵD = γ, the level of these responses varies with the slope of firms’ supply

functions, ω1,t.

To understand the reason for this, we can, just as above, decompose the effect into partial

and general equilibrium components:

∆ logP

∆ logA
= κA

t︸︷︷︸
PE

×
∞∑
j=0

(
ω1,t

(
η − 1

γ

)
(1− κA

t )

)j

︸ ︷︷ ︸
GE

(25)

The PE effect is immediate: firms perceive a κA
t % decrease in their real marginal costs and

adjust their prices by an equal percentage. The GE effects of the change in the price level

are identical other than that productivity uncertainty may differ from monetary uncertainty.

Thus, strategic interactions are attenuated by a factor of 1 − κA
t rather than 1 − κM

t . In

sum, a key takeaway from our analysis is that the general equilibrium transmission of shocks

crucially depends on the slope of microeconomic supply curves in the economy.

4.3 The Slope of Aggregate Supply in Temporary Equilibrium

Having demonstrated that the response of the economy to demand and supply shocks can be

understood in terms of the slope of the aggregate supply curve, we now formally investigate

how various microeconomic forces affect it. The following result, the proof of which follows

immediately from differentiation of Equation 23, describes how the slope of aggregate supply

depends on four key parameters, holding fixed the others:

23



Corollary 3 (How Microeconomic Forces Affect Aggregate Supply). If firms’ supply curves

are upward-sloping (i.e., ω1,t ∈ [0, 1/η)), then the following statements are true:

1. Steeper microeconomic supply steepens the AS curve: ∂ϵSt
/
∂ω1,t ≥ 0.

2. Precision of private information about money steepens the AS curve: ∂ϵSt
/
∂κM

t ≥ 0.

3. Income effects steepen the AS curve: ∂ϵSt
/
∂γ ≥ 0.

4. A higher elasticity of demand steepens the AS curve: ∂ϵSt
/
∂η ≥ 0.

To understand the first statement, observe that a steeper microeconomic supply function

makes prices more responsive to realized quantities ex post. At the aggregate level, this

implies that the price level is also more responsive to changes in output. Second, more

precise private information about the money supply steepens the AS curve because firms

respond to the perceived increase in the money supply by increasing average prices (as

modulated through the intercept α∗
0t,i). This reduces variation in real money balances,

thereby attenuating the effect of demand shocks on aggregate output. Third, output responds

less to money balances the higher is γ (cf. Proposition 1). Consequently, a higher γ steepens

the AS curve.

Finally, a lower elasticity of demand flattens the AS curve. Crucially, this effect is non-

zero if and only if ω1,t ̸= 0, i.e., firms do not undertake pure price-setting. This flattening

operates through the general equilibrium transmission mechanisms of the model. When other

firms raise their prices in response to a money supply shock, firm-level demand increases

because the firm’s relative price is now lower. The magnitude of this demand change is

exactly parameterized by the elasticity of substitution η. If the responsiveness of prices to

quantities at the firm level is non-zero, this demand increase generates an additional price

level response. Consequently, higher market power flattens the AS curve by lowering the

responsiveness of firm-level prices to relative price changes. This prediction is opposite to

the prediction that Woodford (2003b) obtains: in a New Keynesian model with decreasing

returns to scale, the slope of the Phillips curve is lower when demand is more elastic.13

Aggregate Supply Under Price-Setting and Quantity Setting. We can illustrate

some of these effects even more sharply by describing the slope of aggregate supply under

the extreme, but common, assumptions of pure price-setting and quantity-setting. We find

that the aggregate supply curve is vertical under quantity-setting and maximally flat under

price-setting:

13Moreover, the interaction between market power and the slope of aggregate supply arises for completely
different reasons. In the New Keynesian model, the logic is that: when demand is very elastic, higher prices
translate to much lower quantities and, under decreasing returns, much lower marginal costs. This dampens
the desired price change in response to a nominal cost shock.
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Figure 3: Aggregate Supply Under Price-Setting and Quantity-Setting

(a) Price-Setting (ω1,t = 0)

log Yt

logPt

log Y0, logP0

log Y0 +
1
γ
(1− κM)∆ logM,

logP0 + κM∆ logM

AS
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(b) Quantity-Setting (ω1,t = 1/η)

log Yt

logPt

log Y0, logP0

log Y0, logP0 +∆ logM

AS

Note: An aggregate supply and demand illustration of dynamics after a shock of size ∆ logM to
the money supply (see Theorem 2) under price-setting (panel a) and quantity-setting (panel b).

Corollary 4 (Aggregate Supply Under Price- and Quantity-Setting). If firms engage in

price-setting (ω1,t = 0), then:

ϵSt = γ
κM
t

1− κM
t

(26)

If firms engage in quantity-setting (ω1,t =
1
η
), then:

ϵSt = ∞ (27)

We illustrate these two “extreme” predictions for aggregate supply and demand in Figure

3. Since ϵSt is increasing in ω1,t, the price-setting case provides a lower bound on the inverse

elasticity of the aggregate supply curve and therefore maximizes the real effects of demand

shocks. Moreover, as mentioned above, the slope is invariant to the elasticity of demand

only in this case. The case of price-setting recovers the aggregate supply elasticity of Lucas

(1972) with the same insight that more precise information about the money supply leads

to a steeper aggregate supply curve.

In sharp contrast, the AS curve is vertical under quantity-setting and money has no real

effects. This is not a foregone conclusion, but an equilibrium result. Indeed, quantity-setting

firms could condition their production on their monetary signal and money would have real

effects if they did so. As a simple example, setting log qit = sMit is feasible for firms and

this would imply that money has real effects: Ct ∝ Mt. The second part of Corollary 4

follows from the fact that if firms set quantities, then there is no equilibrium in which firms’

quantities depend on the monetary signal.
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These results emphasize that the kinds of strategies firms use have large macroeconomic

consequences. It may be unappealing that the choice of the economic analyst about what

kinds of strategies firms use has such large macroeconomic implications. A key benefit of the

supply functions approach is that it allows the analyst to avoid imposing such restrictions

and the potentially unintended consequences for macroeconomic predictions that follow.

4.4 The Equilibrium Slope of Aggregate Supply

We now endogenize the firm-level inverse supply elasticity as a best response to equilibrium

macroeconomic dynamics. We have verified that if firms use log-linear supply functions, then

aggregate dynamics are endogenously log-linear (by Theorem 2). Moreover, we have verified

that if aggregate dynamics are log-linear, then firms’ uncertainty is endogenously log-normal

(by Proposition 1). Thus, we have shown that firms’ supply curves are endogenously log-

linear in a log-linear equilibrium (by Theorem 1). By combining these results, we reduce the

determination of log-linear equilibrium in the full dynamic economy with functional supply

decisions by firms to a single, scalar fixed-point equation for the slopes of firms’ supply

functions:

Theorem 3 (Equilibrium Supply Elasticity Characterization). All (and only all) solutions

ω1,t ∈ R of the following equation correspond to transformed inverse supply elasticities in

log-linear equilibrium:

ω1,t = Tt(ω1,t) ≡
(η− 1

γ )κA
t

1−ω1,t(η− 1
γ )(1−κA

t )
(σA

t|s)
2 +

1
γ
+(η− 1

γ )κM
t

1−ω1,t(η− 1
γ )(1−κM

t )
(σM

t|s)
2

σ2
ϑ,t +

(
(η− 1

γ )κA
t

1−ω1,t(η− 1
γ )(1−κA

t )

)2

(σA
t|s)

2 +

(
1
γ
+(η− 1

γ )κM
t

1−ω1,t(η− 1
γ )(1−κM

t )

)2

(σM
t|s)

2

(28)

where
(
σA
t|s

)2
= (1− κA

t )
(
σA
t

)2
and

(
σM
t|s

)2
= (1− κM

t )
(
σM
t

)2
.

Proof. See Appendix A.5.

This fixed-point equation incorporates the variances and covariances that enter the op-

timal supply function as a function of equilibrium macroeconomic dynamics when firms use

supply functions with transformed inverse supply elasticities ω1,t. This depends on the re-

sponsiveness of aggregate prices and output to aggregate productivity and monetary shocks

as well as the conditional uncertainty about these shocks when firms set their supply func-

tions. Firms’ idiosyncratic uncertainty about demand matters, but firms’ uncertainty about

idiosyncratic productivity and factor prices do not as the variance of marginal costs per se

does not matter for the choice of an optimal supply function.
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This result makes clear that our model has different implications than those that study

monetary non-neutrality with endogenous information acquisition. In our model, firms learn

via the endogenous signals produced by the market mechanism. This differs from the premise

of rational inattention models, wherein firms have unrestricted access to information but

can only process it at a cost. This difference in information structures drives significant

differences in results. In the rational inattention model of Maćkowiak and Wiederholt (2009),

for example, any increase in idiosyncratic uncertainty lowers the responsiveness of prices

to aggregate shocks. In our model, idiosyncratic productivity and cost uncertainty are not

directly relevant for the slope of aggregate supply, whereas idiosyncratic demand uncertainty

is directly relevant. Moreover, in our framework, the slope of aggregate supply depends on

whether aggregate uncertainty is driven by real or nominal shocks. Thus, the information

that arises endogenously through the market mechanism (firms’ observation of their demand)

is fundamentally different from the information that firms are restricted to obtain under

existing models of costly information acquisition with price-setting firms.

In the remainder of this section, we will study this equation to understand equilibrium

dynamics. First, we can use this result to establish log-linear equilibrium existence and

provide a bound on the number of equilibria by rewriting the fixed-point equation as a

quintic polynomial in ω1,t:

Proposition 2 (Existence and Number of Equilibria). There exists a log-linear equilibrium.

There exist at most five log-linear equilibria.

Proof. See Appendix A.6

We now study how uncertainty, strategic interactions, and market power shape the ag-

gregate supply elasticity in equilibrium.

A Simple Characterization Under Balanced Strategic Interactions. We first char-

acterize the slope of aggregate supply under the parametric condition ηγ = 1. Recall from

our discussion in Section 4.2 that η parameterizes the strength of strategic complementarities :

the additional increase in demand a firm faces from an increase in the aggregate price level

due to a change in relative prices. In contrast, 1/γ parameterizes the strength of strategic

substitutabilities : the reduction in demand a firm faces from an increase in the aggregate

price level due to a reduction in aggregate consumption (that results from the reduction in

real money balances). Hence, ηγ = 1 considers the case when these two strategic interactions

exactly balance. This allows us to simplify the fixed point in Equation 28 considerably.
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Corollary 5 (Idiosyncratic vs. Aggregate Demand Uncertainty). When ηγ = 1, the unique

inverse elasticity of aggregate supply is

ϵSt = γ
κM
t

1− κM
t

(
1 +

1

γ2ρ2tκ
M
t

)
(29)

where ρt =
σϑ,t

σM
t|s

is the relative uncertainty about demand vs. the money supply.

Proof. See Appendix A.7

First, observe that uncertainty about aggregate productivity does not enter the slope of

aggregate supply when ηγ = 1. This is because a perceived increase in aggregate productivity

induces all firms to decrease their prices. In the absence of additional strategic interactions,

firms will not respond to other firms’ price reductions. Hence, the demand state z (Equation

7) is not useful for conducting inference about productivity and so κA
t does not enter the

fixed point. The same is not true for uncertainty about the money supply, as it induces

direct variation on the demand state z by changing aggregate consumption through real

money balances. Consequently, firms can condition on the demand state z to learn about

their nominal marginal costs when the money supply is uncertain.

Second, as ρt → ∞, the inverse elasticity of aggregate supply approaches 1
γ

κM
t

1−κM
t
. This

is the AS curve slope under price-setting (Equation 26). Intuitively, idiosyncratic demand

conditions do not affect a given firm’s marginal cost. Hence, as idiosyncratic demand becomes

relatively more volatile, the firm optimally sets a constant price to keep its markup over

marginal cost constant. Had the firm chosen ω1,t ̸= 0, the firm would induce unprofitable

variation in its price by responding to idiosyncratic demand conditions.

Third, as ρt → 0, the inverse elasticity approaches infinity. Consequently, aggregate

supply is perfectly inelastic and money has no real effects on output. This is the AS curve

that arises from quantity-setting (ω1,t = 1
η
). Intuitively, as uncertainty about the money

supply—and therefore the aggregate price level—increases, firms find it optimal to keep

their quantities constant and let their relative price adjust to demand.

This discussion highlights that relative uncertainty about idiosyncratic vs. aggregate

demand shocks is a crucial determinant of the slope of aggregate supply. Moreover, this

feature only becomes relevant once firms are allowed to optimally choose their supply func-

tions. As Corollary 4 demonstrates, if one were to exogenously impose price-setting or

quantity-setting, the slope of aggregate supply is independent of any feature of idiosyncratic

or aggregate uncertainty other than the signal-to-noise ratio for the money supply.

Thus, supply function choice implies, as a positive matter, a thorny trade-off for monetary

policymakers. If the central bank wishes to maintain discretion to use monetary policy to
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affect the real economy, this will increase uncertainty about the money supply. In turn,

this will steepen the equilibrium aggregate supply curve and make money less effective in

guiding real economic outcomes. Therefore, as in the classic “islands” model of Lucas (1972),

discretionary monetary policy may be, at least partially, self-defeating.

Equilibrium Under Dominant-Uncertainty Limits. To better understand how each

source of uncertainty matters, we next characterize how equilibria behave as each source of

uncertainty becomes dominant.14 These results hold for any values of η > 1 and γ > 0, in

contrast to the analysis with balanced strategic interactions above.

Corollary 6 (Dominant-Shock Limits). The following statements are true:

1. As σϑ,t → ∞, in any equilibrium ω1,t → 0 (price-setting)

2. As σM
t|s → ∞, in any equilibrium ω1,t → 1

η
(quantity-setting)

3. As σA
t|s → ∞ and ηγ ̸= 1, in any equilibrium ω1,t → 1

η− 1
γ

Proof. See Appendix A.8

The intuition for this result mirrors that of Corollary 5. As idiosyncratic uncertainty

about demand becomes dominant, firms find it optimal to set prices to keep their markup

over real marginal costs constant. As prior uncertainty about the money supply becomes

dominant, firms become more uncertain about the aggregate price level. Consequently, firms

find it optimal to set quantities and let their relative prices adjust to meet demand. Finally,

as uncertainty about aggregate productivity becomes dominant, firms use the demand state

z to make inferences solely about the realization of aggregate productivity. Under perfect

information, a 1% decrease in productivity would imply that firms raise their prices by 1%.

This translates to an (η − 1
γ
)% increase in demand for a given firm. Since firms would

optimally like to keep their markup over marginal cost constant, they infer that this implies

a 1% reduction in productivity, and decrease their prices by
[
1/(η − 1

γ
)
]
%. Observe that

this force implies a downward-sloping supply curve whenever ηγ < 1. Intuitively, if ηγ < 1,

income effects in labor supply are weak and the firm expects a lower real marginal cost after

a positive demand shock.

The (Absent) Role of Total Uncertainty. We have so far seen that the nature of

uncertainty (idiosyncratic vs. aggregate and demand vs. productivity) matters. Thus, the

presence of uncertainty is of central importance to our analysis. However, a distinguishing

feature of the theory that we have developed is that the total level of uncertainty does not

14Formally, we take these limits for σx
t|s and x ∈ {M,A} by scaling σs,t

x and σx
t by a common factor.
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matter. To make this claim formal, fix a scalar λ ≥ 0 and scale all uncertainty in the

economy according to:

(σϑ,t, σz,t, σϕ,t, σA,t, σA,s,t, σM,t, σM,s,t) 7→ (λσϑ,t, λσz,t, λσϕ,t, λσA,t, λσA,s,t, λσM,t, λσM,s,t) (30)

In this sense, λ is a measure of the total level of uncertainty faced by firms. Define the

correspondence ES
t : R+ ⇒ R̄, where ES

t (λ) is the set of equilibrium inverse supply elasticities

for the level of uncertainty λ. We observe the following:

Proposition 3 (Invariance to Uncertainty and Discontinuity in the Limit). For λ > 0,

ES
t (λ) is constant and the equilibrium supply elasticity is invariant to the level of uncertainty.

Moreover, ES
t (0) = {∞}. Therefore, the equilibrium supply elasticity is discontinuous in the

zero uncertainty limit:

lim
λ→0

ES
t (λ) ̸= ES

t (0) (31)

Proof. See Appendix A.9

There are two important implications of this result. First, the total level of uncertainty

does not matter for the slope of the aggregate supply curve. This constitutes a significant

difference between our model and models with menu costs. Concretely, in menu cost models,

any increase in uncertainty regarding the optimal reset price raises firms’ private benefits of

price flexibility without affecting the private costs, which are assumed to be fixed. Thus,

increases in uncertainty lead to more variable prices at the micro level and more monetary

neutrality at the macro level. By contrast, in our model, the level of uncertainty does not

matter—only the relative magnitudes of uncertainty matter. One important implication

of this difference is that idiosyncratic productivity uncertainty has no effect on the slope

of aggregate supply in our model, while it would steepen aggregate supply in menu cost

models that share our primitive economic assumptions on preferences and technology (such

as Golosov and Lucas, 2007; Alvarez et al., 2016). Another important implication is that

while idiosyncratic demand variation flattens aggregate supply in our model, it would have

no effect in these menu cost models.

Second, the slope of the aggregate supply curve is discontinuous in the zero uncertainty

limit. Indeed, ES
t (λ) is typically neither upper hemi-continuous nor lower hemi-continuous

at λ = 0. Thus, even a vanishingly small level of uncertainty can have significant effects

on firm and aggregate behavior. This again represents a substantial difference to menu

cost models, in which a small level of uncertainty has small effects on aggregate behavior

and not the discontinuity that our model generates.15 Importantly, this means that even

15Similarly, models with information acquisition and nominal rigidities (Afrouzi et al., 2024) are also
different from our model in that they do not feature this discontinuity in the limit.
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in environments with low levels of uncertainty, the economic mechanisms that underlie our

analysis are unchanged.

4.5 A General Framework for Macroeconomic Analysis

Our preceding analysis tractably illustrated the effect of supply functions in a fully non-

linear fashion. To do so, we made a number of simplifying assumptions on utility and

the nature of firms’ production functions. However, we emphasize that our analysis can

readily be extended to general linearized macroeconomic environments of the kind that are

commonly studied in both state-of-the-art theoretical and quantitative work (see e.g., Wolf,

2023; McKay and Wolf, 2023). We now describe a general class of models in which the study

of supply functions is tractable. We note that this is not meant as being exhaustive of the

set of models in which supply functions are tractable or reasonable macroeconomic models.

Consider a model which generates a demand function for products given by qi,t =

d(pit, z
D
it ), where the random variable zDit can depend on other, potentially endogenous vari-

ables of the model as well as exogenous stochastic processes. Assume further that the value

V a firm derives from setting a price pit and selling a quantity qit is given by V (pit, qit, z
V
it ),

where zVit is an nV -sized vector of (potentially endogenous) variables that affect firm’s profits

at time t. Given the discussion in Section 2, the firm’s problem is to choose a price that is

contingent on demand qit, which is further equivalent to choosing a price contingent on the

demand state zDit . That is, for each state realization zDit , the firm chooses a price pit that

maximizes the conditional expected value

pit(z
D
it ) = argmaxEit[V (pit, d(pit, z

D
it ), z

V
it )|zDit ] (32)

where we have substituted firms’ demand into the value function. We now consider a log-

linear approximation around a deterministic steady state of this model, using hats to denote

log deviations. The approximated policy function must evidently satisfy

p̂it = ω̃′
1,itEit

[
ẑVit |ẑDit

]
(33)

for some nV -sized vector ω̃1,it. Under the assumption that the shocks ẑVit and ẑDit are normally

distributed, optimal prices can further be written as

p̂it = ω1,itẑ
D
it (34)

for some scalar ω1,it. The coefficients ω1,it, the slopes of firms’ supply functions in their
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demand states, then determine the motion for the economy’s log-linearized ideal price index

when averaged across firms, i.e., P̂t =
∫ 1

0
p̂it di. This concludes the “firm block” of the model.

Following McKay andWolf (2023) or Wolf (2023), we assume that the aggregate dynamics

of our economy can be summarized as

Hxx+Hεε = 0 (35)

where xt is an nx-dimensional vector of endogenous variables (such as the ideal price index

P̂t), εt is an nε-dimensional vector of Gaussian structural shocks, and Hz and Hε are con-

forming matrices.16 Equation 35, for example, contains the relevant first-order conditions

and market-clearing conditions that determine the dynamics of an economy. Of course, the

matrices Hx and Hε are dependent on firms’ supply functions through the scalars ω1,it.

Given ω1,it, we can solve for the equilibrium dynamics of the system summarized by 35.

Our additional “rational expectations” restriction then imposes that the value of ω1,it is con-

sistent with the equilibrium law of motion for prices given by Equation 33.17 As argued by

McKay and Wolf, many of the parametric structural models commonly used for counterfac-

tual analysis fit into the general framework of Equation 35. Our supply function approach

simply asserts that the coefficients Hx and Hε are consistent with the information underlying

firm decision-making. We thus argue that supply functions can be embedded and studied

within a general class of commonly used macroeconomic models. Indeed, in ongoing work,

Nikolakoudis (2024) incorporates supply function choice in a production network economy

using the method described above.

5 Quantitative Analysis: Aggregate Supply in the US

In this final section, we study our model’s implications for the slope of aggregate supply in

the United States. We employ a sufficient-statistics approach, which allows us to bypass

any issues of equilibrium selection. We find that our model generates a historical time

series for the slope of aggregate supply in the US that is consistent with external empirical

evidence. Concretely, our model can explain a quantitatively significant portion of the secular

flattening of aggregate supply from the 1980s to the Great Moderation due to changing

relative uncertainty about inflation versus demand. The model explains even more of this

flattening if we allow for an upward trend in market power. Our model also predicts a

16Following McKay and Wolf (2023), we use boldface notation to stack the time paths for all variables
(e.g. x = (x′

1, . . . ,x
′
nx
)′). The matrices Hx and Hε are conformable matrices that map bounded sequences

to the space of bounded sequences.
17The Gaussian nature of shocks implies that the initial assumption of normality is verified.
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relatively flat aggregate supply curve in the Great Recession, since this period is characterized

by a spike in real rather than nominal uncertainty (at the micro and macro levels), and a

pronounced increase in the supply curve’s slope in the post-Covid period, due to a resurgence

of inflationary shocks.

5.1 Estimating the Model

Our model provides explicit formulae for the firm-level inverse supply elasticity ω1,t (Theorem

1) and the inverse elasticity of aggregate supply ϵSt (Theorem 2). To obtain estimates of these

quantities, we need to know two sets of objects: the structural parameters (η, γ) and firms’

time-varying uncertainty. We summarize our calibration in Table 1 and describe the details

below.

Structural Parameters. We set the price elasticity of demand at η = 9, based on the

study of Broda and Weinstein (2006). These authors use comprehensive panel data on US

imports to estimate demand curves at the level of disaggregated products. This is, usefully

for our purposes, direct evidence for the slope of demand curves, as opposed to indirect

evidence from matching average product markups under the assumption that firms are full-

information price setters. Later, in an extension, we consider an alternative calibration with

a secular downward trend in η (i.e., a secular upward trend in market power) over our studied

time period (1960-2022). For our analysis, γ affects only how real wages respond to output

in equilibrium. Thus, the cyclicality of US real wages is the relevant moment in our model

given Proposition 1 to which γ should be calibrated. Because of this, we set γ = 0.095,

based on the calibration in Flynn and Sastry (2022) for the cyclicality of US real wages. We

will later perform a full sensitivity analysis of these choices (see Figure 12).

Time-Varying Uncertainty. We next need to estimate firms’ time-varying uncertainty

about aggregate prices Pt, demand Ψit, and real marginal costs Mit. To our knowledge,

there are no datasets that directly measure firms’ potentially correlated uncertainty about

both microeconomic and macroeconomic objects. Our approach is to proxy for this using

time-varying statistical uncertainty about macroeconomic aggregates implied by a GARCH

model and assumptions, based on the existing literature, about the systematic relation-

ship between macroeconomic and microeconomic uncertainty. This gives us estimates of

(σ2
P,t, σ

2
Ψ,t, σM,Ψ,t, σP,Ψ,t, σM,P,t). We then choose a time-invariant value of κM , the quality of

firms’ signal of the money supply, to target a sample-average aggregate supply slope of 0.15.

To estimate our model of macroeconomic uncertainty, we use quarterly-frequency US data

on real GDP, the GDP deflator, and capacity-utilization adjusted total factor productivity
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(TFP) (Basu et al., 2006; Fernald, 2014) from 1960 Q1 to 2022 Q4. Thus, our mapping from

model to data considers quarterly-frequency decisions.

We map these variables to our general equilibrium model from Section 3 as follows. First,

by Proposition 1, the model-implied demand shock is Ψit = Ytϑit, where Yt is aggregate real

GDP (i.e., “aggregate demand”) and ϑit is a firm-specific demand shock that is, by construc-

tion, orthogonal to aggregate conditions. Thus, we can decompose σ2
Ψ,t = σ2

Y,t + σ2
ϑ,t, where

the latter two terms are respectively the perceived variances of log Yt and log ϑit. Second,

we may use Proposition 1 to obtain that real marginal costs are Mit = (ϕitY
γ)/(ζitAt).

However, as the firm-level factor price shock ϕit and productivity shock ζit are idiosyncratic

and we only need to measure the covariances of Mit with Ψit and Pt, we do not need to

measure ϕit or ζit. Thus, it is sufficient for us to measure the common component of real

marginal costs Mt = Y γ
t /At. We use capacity-adjusted TFP as our measure of At.

Finally, we assume that uncertainty about idiosyncratic demand is directly proportional

to uncertainty about aggregate marginal costs, or σ2
ϑ,t = R2σ2

M,t. We justify this based

on the finding of Bloom et al. (2018) that the stochastic volatility of TFPR among man-

ufacturing firms (“micro volatility”) is well modeled as directly proportional to stochastic

volatility in aggregate conditions (“macro volatility”). This justification relies on an as-

sumption that TFPR dispersion is primarily driven by demand shocks. This assumption is

consistent with the findings of Foster et al. (2008) that cross-firm variation in revenue total

factor productivity (TFPR) derives almost exclusively from demand differences rather than

marginal cost differences within specific industries. Based on the quantitative findings of

Bloom et al. (2018), we take R = 6.5 as a baseline. In an extension, to examine robustness

to this proportionality assumption, we directly use (annual) data on TFPR dispersion from

Bloom et al. (2018) to perform our calculation and find very similar results.

We next estimate time-varying uncertainties regarding inflation, real output, and real

marginal costs using a multivariate GARCH model. In particular, letting Zt denote the

vector (∆ logPt,∆ log Yt,∆ logMt), we model

Zt = AZt−1 + εt, εt ∼ N(0,Σt), Σt = D
1
2
t CD

1
2
t (36)

where A is a matrix of AR(1) coefficients, Dt is a diagonal matrix of time-varying variances

(and D
1
2
t is a diagonal matrix of standard deviations), and C is a static matrix of correlations.

We assume that each diagonal element of Dt, denoted as σ2
i,t, evolves according to:

σ2
i,t = si + αiε

2
i,t−1 + βiσ

2
i,t−1 (37)

with unknown constant si and coefficients (αi, βi). Formally, this is a GARCH(1,1) model
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with constant conditional correlations (Bollerslev, 1990). We estimate all of the parameters

via joint maximum likelihood.

Our goal is to capture the broad trends in relative uncertainty about macroeconomic

variables. There are, of course, many possible statistical models for macroeconomic uncer-

tainty. We use the GARCH approach as it is a standard approach in the literature.18 In the

GARCH model we estimate, uncertainty is high when there is a large prediction error in one

of the equations (if αi > 0) and if uncertainty was high previously (if βi > 0). The restric-

tion to constant correlations restricts all covariances to move in proportion to the variances,

and thus rules out the possibility that the correlation structure among output, prices, and

marginal costs varies over time. In return, this significantly reduces the number of estimated

parameters and improves the convergence of the maximum likelihood algorithm.

Using the GARCH estimates, we derive maximum-likelihood point estimates of every

element of Σt, which correspond to the variances in the (Gaussian) conditional forecast of

Zt. Letting σ̂t denote the point estimates of specific elements of that matrix, we directly

obtain σ̂2
P,t and σ̂2

M,P,t from the GARCH model and then we compute:

σ̂2
Ψ,t = σ̂2

Y,t +R2σ̂2
M,t , σ̂M,Ψ,t = σ̂M,Y,t , σ̂Ψ,P,t = σ̂Y,P,t (38)

We plot our estimates of these objects in Figure 7 in the Appendix. We observe that our

estimates of demand uncertainty are an order of magnitude larger than our estimates of

other uncertainties. This is natural given our large assumed value of R. But this does not

necessarily imply that demand uncertainty is the only influential force shaping the slope of

microeconomic or macroeconomic supply, since uncertainties enter our formulas in interaction

with the elasticity of demand η. We will return to this point when presenting our results.

Estimates of Model Objects. Armed with these estimates, we can calculate our empir-

ical proxies for the firm-level inverse supply elasticity as simple plug-in estimates:

α̂1,t =
ησ̂2

P,t + σ̂M,Ψ,t + σ̂P,Ψ,t + ησ̂M,P,t

σ̂2
Ψ,t − ησ̂M,Ψ,t + ησ̂P,Ψ,t − η2σ̂M,P,t

and ω̂1,t =
α̂1,t

1 + ηα̂1,t

(39)

Our calculation captures uncertainty about outcomes realized in quarter t and is measurable

in data from quarter t − 1 and prior. It therefore describes incentives of a decisionmaker

fixing a choice for quarter t based on their uncertainty at the end of quarter t− 1.

This sufficient statistics approach has four potentially appealing features compared to full

18Another option would have been to employ a latent state model that allows volatility to be directly
affected by shocks. As Jurado et al. (2015) find very similar uncertainty series in latent-state and GARCH
models in the US data both “qualitatively and quantitatively,” we employ a GARCH approach for simplicity.
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Table 1: Model Parameters and Estimation Approach

Parameter Interpretation Method Value
η Price elas. of demand Match Broda and Weinstein (2006) 9
γ Income effects Match Flynn and Sastry (2022) 0.095
κM Prec. of monetary info. Match average slope of aggregate supply 0.40
σ2
P,t Price uncertainty GARCH model Fig. 7

σ2
Ψ,t Demand uncertainty GARCH + match Bloom et al. (2018) Fig. 7

σM,Ψ,t Cost-demand covariance GARCH model Fig. 7
σP,Ψ,t Pice-demand covariance GARCH model Fig. 7
σM,P,t Cost-price covariance GARCH model Fig. 7

Note: Description of model parameters, how we interpret them, how we estimate them, and their
values. The time series for the time-varying uncertainties are presented in Figure 7. The text of
Section 5.1 describes our methods in full detail.

structural estimation of our model. First, we do not need to estimate stochastic processes

for the underlying structural shocks. Second, we bypass any issues of equilibrium selection.

Third, these estimates of α1 and ω are valid in a larger class of models that use our “supply

block” but close the model with different “demand blocks,” as described in Section 4.5.

Finally, by disciplining beliefs with sufficient statistics, we overcome the Bergemann et al.

(2021) critique that supply functions have few robust predictions across all potential beliefs

that firms might have. Because of this, our approach could be useful in other areas of

economics that use supply functions, such as industrial organization and finance (see Rostek

and Yoon, 2023, for a review).

We finally compute our estimate of the inverse elasticity of aggregate supply:

ϵ̂St = γ
κM + ω̂1,t

γ
(1− κM)

(1− ω̂1tη)(1− κM)
(40)

Given our earlier estimates, this is pinned down given a single unknown parameter, the

precision of private information about the money supply, κM . As mentioned earlier, we set

κM so that the average ϵ̂St from 1960 to 2022 is 0.15. This yields a value of κM = 0.40.

5.2 Results: Aggregate Supply Over Time

Figure 4 plots our estimates of the slope of Aggregate Supply from 1960 to 2022. Quantita-

tively, the model predicts that aggregate supply was relatively flat in the 1960s, steepened

in the 1970s and 1980s, before flattening again during the Volcker disinflation. Furthermore,

aggregate supply was notably flat during the Great Moderation leading up to the financial
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Figure 4: The Slope of Aggregate Supply Over Time
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Note: This Figure plots estimates of the inverse elasticity (“slope”) of aggregate supply as measured
by Equations 39 and 40. The units can be interpreted as the percentage change in the price level
associated with a demand shock that changes real GDP by 1%. The blue dashed line indicates the
estimates of Hazell et al. (2022), based on state-level estimates of consumer prices and unemploy-
ment and an identification strategy that isolates local demand shocks (columns 3 and 4, panel B,
of Table II). The red dotted line indicates the estimates of Ball and Mazumder (2011), based on
aggregate data (column 4 of Table 3).

crisis and then steepened again after the Covid-19 pandemic.

Our estimates are consistent with external estimates for medium-frequency changes in

the slope of aggregate supply in the United States. In Figure 4, we indicate estimates of

the slope of aggregate supply by Hazell et al. (2022) with a blue dashed line and estimates

by Ball and Mazumder (2011) with a red dotted line. The former authors use state-level

data on unemployment and inflation and an instrumental variables (IV) strategy based on

isolating state-level demand shocks. The latter authors use aggregate data on the output gap

and inflation and measure their unconditional relationship.19 In Table 2, we quantitatively

compare our model’s estimates with those of the aforementioned references. Our model can

explain 51% of the flattening estimated by Hazell et al. (2022) and 84% of the flattening

estimated by Ball and Mazumder (2011). By an equivalent calculation, our model can

also explain 54% of the latter authors’ estimated steepening of aggregate supply between

1960-1972 and 1973-1984. These changes arise in our model as a consequence of changing

19In the presence of confounding supply shocks, this understates the slope of aggregate supply.
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Table 2: The Flattening Aggregate Supply Curve: Theory vs. Evidence

HHNS (2022) BM (2011)

Pre-Period
Period 1978-1990 1973-1984
Data 0.198 0.371

Model: Uncertainty Only 0.166 0.223
Model: + Mkt. Power Trend 0.175 0.254

Post-Period
Period 1991-2018 1985-2007
Data 0.090 0.136

Model: Uncertainty Only 0.119 0.104
Model: + Mkt. Power Trend 0.103 0.092

Flattening
Data 55% 63%

Model: Uncertainty Only 28% 53%
Model: + Mkt. Power Trend 41% 64%

Note: This table compares the model predictions and literature estimates for the long-run flattening
of the aggregate supply curve from Hazell et al. (2022) and Ball and Mazumder (2011). The
“Uncertainty Only” model is the baseline with fixed elasticity of demand η = 9 (Figure 4). The “+
Market Power Trend” model is the “Small Change” scenario (Figure 6), which introduces a linear
trend from η = 12 in 1960 to η = 6 in 2022. “Flattening” is 100 · (1− SlopePost/SlopePre).

uncertainties, holding fixed all other structural parameters.

Our finding that aggregate supply is relatively flat during the Great Recession is con-

sistent with the “missing disinflation” of the crash and “missing inflation” of the recovery,

phenomena which standard macroeconomic models have struggled to explain (Coibion and

Gorodnichenko, 2015; Bobeica and Jarociński, 2019). An additional implication of our anal-

ysis is that a spike in microeconomic demand uncertainty, as documented for example by

Bloom et al. (2018), may have contributed toward flattening the aggregate supply curve and

hence lessening the response of prices to aggregate demand shocks.

Finally, our finding that the slope of aggregate supply spiked following the Covid Crisis

is consistent with the conclusions of an emerging empirical literature on that topic. Using an

empirical strategy that isolates local demand shocks in MSA-level data, Cerrato and Gitti

(2022) estimate that supply steepened by a factor of 3.4 between the “pre-Covid” period of

January 1990 to February 2020 and the “post-Covid” period of March 2021 to the present.

The comparable number generated by our model is 2.5, or about 3/4 of this estimate. Our

estimating steepening is consistent with both large effects of aggregate demand shocks on

inflation and with a relatively “soft landing” for monetary policy—that is, disinflation at

relatively low output cost. Note that these are conditional moment predictions about the

response to inflation to demand shocks, which map to the empirical estimates of Cerrato

and Gitti (2022) and the discussion of a monetary “soft landing.” This does not directly

38



Figure 5: Deconstructing the Slope of Aggregate Supply: Which Uncertainties Matter?
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Note: This Figure plots estimates of the inverse elasticity of aggregate supply as measured by
Equations 39 and 40, holding fixed one component of uncertainty at a time. The grey solid line
corresponds to the baseline estimate from Figure 4.

attribute realized inflation to demand shocks versus supply shocks—our sufficient statistics

approach does not require taking a stance on this issue. Nonetheless, one implication of a

steep aggregate supply curve is that smaller demand shocks would be required to rationalize

the same changes in inflation post-Covid compared to other episodes.

To probe the robustness of these findings, Figure 8 in the Appendix plots our secondary,

annual-frequency estimates that directly incorporate data on microeconomic uncertainty

from Bloom et al. (2018). These estimates imply an even more dramatic flattening from

the 1970s to the Great Moderation, although we cannot use them to make predictions for

the 1960s or 2020s as the estimates from Bloom et al. (2018) do not cover these periods.

Finally, in the Appendix we also plot our estimates of the slope of firm-level supply (Figure

9), which as mentioned above would be valid even under different closures of the model’s

“demand block” as described in Section 4.5. As the estimated slope of firm-level supply has

the same basic patterns as the estimated slope of aggregate supply, our main quantitative

lessons would go through under any closure that preserves the intuitive link between steeper

microeconomic supply and steeper macroeconomic supply.

Mechanisms: Which Uncertainties Matter More? The time variation in our esti-

mate of ϵSt arises from time-varying uncertainty about several objects. To better understand

the role of each component of the calculation, we perform a variant calculation in which

39



we hold each uncertainty term fixed at its sample average, one by one. We plot the re-

sults in Figure 5. The combination of time-varying uncertainty about the price-level and

time-varying uncertainty about the relationship between prices and (real) marginal costs

helps quantitatively explain the overall flattening from the 1970s into the Great Moderation.

While uncertainty about demand is large, and features significant high-frequency variation

(see Appendix Figure 7), it is not essential for our low-frequency predictions. By contrast, in-

corporating demand uncertainty is essential to avoid predicting a large spike in the aggregate

supply slope in the first several quarters of the Covid-19 lockdown.

Market Power and the Flattening Supply Curve. A recent literature has suggested

that market power, as measured by rising markups, has risen throughout time (De Loecker

et al., 2020; Edmond et al., 2023; Demirer, 2020). Combined with our theoretical finding

that increased market power flattens aggregate supply under plausible parameter values, this

suggests another potentially relevant culprit for the long-run flattening of supply.

To study this possibility, we consider alternative calibrations of the slope of aggregate

supply in which we allow a secular downward trend in the elasticity of demand. We consider

a “small change” in which η linearly declines from 12 to 6 and a more exaggerated “large

change” in which η linearly declines from 15 to 3. These exercises are not counterfactuals,

which would require fully estimating the model and accounting for the effects of market

power on macroeconomic uncertainty. Instead, they are alternative calibrations that would

be more appropriate than our baseline if the elasticity of demand has truly fallen over time,

which is a prominent hypothesis.

Introducing a decline in market power increases the slope of aggregate supply in the

1970s and decreases the slope in modern times (Figure 6). Calibrating to the “small change”

in market power allows us to fit three-quarters of the flattening measured by Hazell et al.

(2022) and all of the flattening measured by Ball and Mazumder (2011) (Table 2). The

more extreme scenario for market power allows our model to explain a greater flattening,

but potentially incorrectly predicts a relatively flat aggregate supply curve in the 2020s.

Supply Over a Longer Time Period. In our main analysis, we focus on the period

after 1960. In an extension, we consider all data since World War II. This necessitates

estimating a different GARCH model for macroeconomic uncertainty, so in principle, it

could affect our estimates for the entire sample. We plot the results in Appendix Figure

10. We find very comparable estimates from 1960 onward, and a very large and volatile

slope of aggregate supply between 1947 and 1960. The latter finding is consistent with there

being large volatility in the money supply and the price level in the wake of the War and

the Bretton Woods agreement.
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Figure 6: Rising Market Power and Flattening Aggregate Supply
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Note: This Figure plots the inverse elasticity of aggregate supply under different scenarios of
declining market power (Panel b). The solid line keeps η constant at 9 and corresponds to our
baseline estimates. The blue, dashed line (“small change”) assumes a linear decline in η from 12
to 6 over the time sample. The red, dotted line assumes a linear decline in η from 15 to 3 over the
time sample.

Robustness and Sensitivity Analysis. In Appendix Figure 12 we report the robustness

of these findings to different calibrations of η ∈ [6, 12], R ∈ [5, 10], and γ ∈ [0.05, 1.00].

Specifically, we re-calibrate the model to match the average slope of 0.15 and check how

different assumptions affect our model’s predictions for the long-run flattening during the

Great Moderation. We predict a larger flattening under larger assumed values of η, which

exacerbate the effect of changing inflation uncertainty; smaller R, which allows inflation

uncertainty to play a larger role in the calculation; and larger γ, which makes real wages

more cyclical, especially in the 1970s. We note in particular that the effects of higher γ

(more cyclical wages) are very muted: we conclude that equilibrium effects through wages

are relatively unimportant for our main findings about the slope of aggregate supply.

In Appendix Figure 11, we report results from a pseudo-out-of-sample variant of our main

calculation, in which we use data up to quarter t− 1 to forecast the conditional variance of

variables at quarter t. We find very similar broad patterns, although estimates in the early

part of the sample are, unsurprisingly, noisier.

41



6 Conclusion

In this paper, we enrich firms’ supply decisions by allowing them to choose supply functions

that describe the price charged at each quantity of production. We show how to model sup-

ply functions in a macroeconomic setting and characterize how the optimal supply function

depends on the elasticity of demand and the nature of uncertainty that firms face. Our

framework yields rich implications when embedded in an otherwise standard monetary busi-

ness cycle model. We find that a higher elasticity of demand and increased uncertainty about

the price level relative to demand endogenously steepen aggregate supply. When mapped to

the data, our model generates variation in the slope of aggregate supply that is consistent

with empirical evidence in the US.

On the basis of our analysis, we argue that supply schedules warrant serious consideration

as an alternative model of firm conduct in macroeconomics for three core reasons. First,

most existing work assumes that firms set a price in advance and commit to supply at

the market-clearing quantity. Our results emphasize that this is not generally an optimal

way for a firm to behave and that the macroeconomic conclusions that one draws about

the effects of uncertainty, the propagation of monetary and productivity shocks, and the

role of market power are highly sensitive to this choice. For example, the price-setting

assumption maximizes the degree of monetary non-neutrality and leaves no role for market

power. Second, we have shown that working with supply schedules is analytically tractable

under the standard assumptions in the literature and can be done in a large class of linearized

macroeconomic models of the kind studied by, for example, Wolf (2023) and McKay and Wolf

(2023). Finally, taking the supply-schedule perspective yields economic predictions that are

consistent with broad trends in US aggregate supply over the last 60 years.

Within the context of supply schedules and the macroeconomy, our study is only a first

exploration; there remains much to examine, both empirically and theoretically. We high-

light two particularly salient implications of our analysis that we leave open to future work.

First, our work highlights the importance of firm-level supply elasticities as a critical moment

for the business cycle. Empirical work that measures such elasticities and investigates how

they systematically vary would be highly valuable for disciplining richer models with supply

schedules. Such work would require detailed firm-level data on both prices and quantities.

Second, it would be interesting to examine the conduct of optimal monetary policy in a

setting with supply schedule choice. We have shown that more volatile monetary policy

(perhaps associated with more discretionary monetary policy) can be self-defeating by mak-

ing the economy endogenously less responsive to monetary stimulus. A complete normative

analysis of this issue is an interesting avenue for future research.
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Appendices

A Omitted Proofs

A.1 Proof of Theorem 1

Proof. Fix a supply function f . The realized price of the firm in state z solves f(p̂(z), zp̂(z)−η) =

0. As we placed no restrictions on f , it is equivalent to think of the firm as choosing p̂ directly.

For a given choice of p̂, the firm’s payoff is given by:

J(p̂) =

∫
R4
++

Λ

(
p̂(z)

P
−M

)
zp̂(z)−η dG (Λ, P,M, z) (41)

where G is the cumulative distribution function representing the firm’s beliefs. We therefore

study the problem:

sup
p̂:R+→R++

J(p̂) (42)

Given a solution p̂ for how firms optimally adapt their prices to demand, we will recover the

optimal plan f for how firms optimally set a supply function.

We first derive Equation 7 using variational methods. Consider a variation p̃(z) = p(z)+

εh(z). The expected payoff under this variation is:

J(ε;h) =

∫
R4
++

Λ

(
p(z) + εh(z)

P
−M

)
z (p(z) + εh(z))−η dG (Λ, P,M, z) (43)

A necessary condition for the optimality of a function p is that Jε(0;h) = 0 for all F−measurable

h. Taking this derivative and setting ε = 0, we obtain:

0 =

∫
R4
++

[
Λ
h(z)

P
zp(z)−η − ηΛh(z)

(
p(z)

P
−M

)
zp(z)−η−1

]
dG (Λ, P,M, z) (44)

Consider h functions given by the Dirac delta functions on each z, h(z) = δz. This condition

becomes:

0 =

∫
R3
++

[
Λ
1

P
tp(t)−η − ηΛ

(
p(t)

P
−M

)
tp(t)−η−1

]
g(Λ, P,M, t) dΛdP dM (45)
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for all t ∈ R++. This is equivalent to:

0 =

∫
R3
++

[
Λ
1

P
tp(t)−η − ηΛ

(
p(t)

P
−M

)
tp(t)−η−1

]
g(Λ, P,M|t) dΛdP dM

= (1− η)E
[
Λ
1

P
|z = t

]
tp(t)−η + ηE [ΛM|z = t] tp(t)−η−1

(46)

Thus, we have that an optimal solution necessarily follows:

p(t) =
η

η − 1

E[ΛM|z = t]

E[ΛP−1|z = t]
(47)

as claimed in Equation 7.

We now evaluate the expectations. Using log-normality,

E[ΛM|z = t] = exp

{
µΛ|z(t) + µM|z(t) +

1

2
σ2
Λ|z +

1

2
σ2
M|z + σΛ,M|z

}
E[ΛP−1|z = t] = exp

{
µΛ|z(t)− µP |z(t) +

1

2
σ2
Λ|z +

1

2
σ2
P |z − σΛ,P |z

} (48)

where µX|z = E[logX| log z] and σX,Y |z = Cov[logX, log Y | log z]. Thus,

E[ΛM|z = t]

E[ΛP−1|z = t]
= exp

{
µM|z(t) + µP |z(t) +

1

2
σ2
M|z −

1

2
σ2
P |z + σΛ,M|z + σΛ,P |z

}
(49)

Using standard formulas for Gaussian conditional expectations,

µM|z(t) = µM +
σM,z

σ2
z

(log t− µz)

σ2
M|z = σ2

M − σ2
M,z

σ2
z

σΛ,M|z = σΛ,M − σΛ,zσM,z

σ2
z

µP |z(t) = µP +
σP,z

σ2
z

(log t− µz)

σ2
P |z = σ2

P − σ2
P,z

σ2
z

σΛ,P |z = σΛ,P − σΛ,zσP,z

σ2
z

(50)

where:
σ2
z = σ2

Ψ + η2σ2
P + 2ησΨ,P

σM,z = σM,Ψ + ησM,P

σP,z = σP,Ψ + ησ2
P

σΛ,z = σΛ,Ψ + ησΛ,P

(51)

We now combine these expressions with Equation 47 to derive the optimal supply func-

tion. We first observe that

log p = ω0 + ω1 log t (52)
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where:

ω0 = log
η

η − 1
+ µM + µP − ω1µz +

1

2
σ2
M|z −

1

2
σ2
P |z + σΛ,M|z + σΛ,P |z (53)

ω1 =
σM,z + σP,z

σ2
z

=
σM,Ψ + ησM,P + σP,Ψ + ησ2

P

σ2
Ψ + η2σ2

P + 2ησΨ,P

(54)

Next, using the demand curve, we observe that z = qpη. Therefore, log t = log q − η log p.

Substituting this into Equation 52, and re-arranging, we obtain

log p = α0 + α1 log q (55)

where:

α0 =
ω0

1− ηω1

, α1 =
ω1

1− ηω1

(56)

We finally derive the claimed expression for α1,

α1 =

σM,Ψ+ησM,P+σP,Ψ+ησ2
P

σ2
Ψ+η2σ2

P+2ησΨ,P

1− η
σM,Ψ+ησM,P+σP,Ψ+ησ2

P

σ2
Ψ+η2σ2

P+2ησΨ,P

=
σM,Ψ + ησM,P + σP,Ψ + ησ2

P

σ2
Ψ + ησΨ,P − ησM,Ψ − η2σM,P

(57)

Completing the proof.

A.2 Proof of Corollary 1

Proof. If 2ησM,P + σM,Ψ ≥ σP,Ψ, then the denominator of Equation 6 is decreasing in η.

Moreover, if σM,P ≥ 0, the numerator is increasing in η. Hence, α1 is increasing in η

whenever α1 > 0.

A.3 Proof of Proposition 1

Proof. From the household’s choice among varieties, the demand curve for each variety i is

pit
Pt

=

(
cit

ϑitCt

)− 1
η

(58)

From the intratemporal Euler equation for consumption demand vs. labor supply, the house-

hold equates the marginal benefit of supplying additional labor witC
−γ
t P−1

t with its marginal
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cost ϕit. Thus, variety-specific wages are given by

wit = ϕitPtC
γ
t (59)

From the intertemporal Euler equation between consumption and money today, the cost of

holding an additional dollar today equals the benefit of holding an additional dollar today

plus the value of an additional dollar tomorrow:

C−γ
t

1

Pt

=
1

Mt

+ βEt

[
C−γ

t+1

1

Pt+1

]
(60)

Further, from the intertemporal choice between bonds, the cost of saving an additional dollar

today equals the nominal interest rate 1+it times the value of an additional dollar tomorrow:

C−γ
t

1

Pt

= β(1 + it)Et

[
C−γ

t+1

1

Pt+1

]
(61)

From Equations 60 and 61, we obtain:

1

Mt

+ βEt

[
C−γ

t+1

1

Pt+1

]
= β(1 + it)Et

[
C−γ

t+1

1

Pt+1

]
(62)

It follows that:
1

Mt

= βitEt

[
C−γ

t+1

1

Pt+1

]
=

it
1 + it

C−γ
t

1

Pt

(63)

where the second equality uses Equation 61 once again. This rearranges to:

Ct =

(
it

1 + it

) 1
γ
(
Mt

Pt

) 1
γ

(64)

We next derive the interest rate. Substituting equation 64 into Equation 61, we obtain:

1 + it
it

1

Mt

= β(1 + it)Et

[
1 + it+1

it+1

1

Mt+1

]
(65)

Dividing both sides by (1 + it), multiplying by Mt, and then adding one, we obtain:

1 + it
it

= 1 + βEt

[
1 + it+1

it+1

Mt

Mt+1

]
= 1 + βEt

[
exp{−µM − σM

t+1ε
M
t+1}

1 + it+1

it+1

]
(66)

where the second equality exploits the fact that Mt follows a random walk with drift. If we
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guess that it is deterministic and define xt =
1+it
it

, then we obtain that:

xt = 1 + δtxt+1 (67)

where:

δt = β exp

{
−µM +

1

2
(σM

t+1)
2

}
(68)

We observe that δt ∈ [0, β] for all t due to the assumption that 1
2
(σM

t )2 ≤ µM . Solving this

equation forward, we obtain that for T ≥ 2:

xt = 1 + δt

(
1 +

T−1∑
i=1

i∏
j=1

δt+j

)
+ δt

(
T∏

j=1

δt+j

)
xt+T+1 (69)

Taking the limit T → ∞, this becomes:

xt = 1 + δt

(
1 +

∞∑
i=1

i∏
j=1

δt+j

)
+ δt lim

T→∞

(
T∏

j=1

δt+j

)
xt+T+1 (70)

where the final term can be bounded using the fact that δt ∈ [0, β]:

0 ≤ δt lim
T→∞

(
T∏

j=1

δt+j

)
xt+T+1 ≤ lim

T→∞
βT+1xt+T+1 (71)

The household’s transversality condition ensures that this upper bound is zero. Formally,

the transversality condition (necessary for the optimality of the household’s choices) is that:

lim
T→∞

βT C
−γ
T

PT

(MT + (1 + iT )BT ) = 0 (72)

Moreover, as Bt = 0 for all t ∈ N, this reduces to limT→∞ βT C−γ
T

PT
MT = 0. By Equation 63,

we have that xt

Mt
=

C−γ
t

Pt
. Thus, the transversality condition reduces to limT→∞ βTxT = 0.

Combining this with Equation 71, we have that limT→∞
(∏T

j=1 δt+j

)
xt+T+1 = 0. An explicit

formula for the interest rate follows:

1 + it
it

= 1 + β exp

{
−µM +

1

2
(σM

t+1)
2

}(
1 +

∞∑
i=1

i∏
j=1

β exp

{
−µM +

1

2
(σM

t+j+1)
2

})
(73)

The formulae in Equation 19 then follow. In particular, Ψit = ϑitCt follows from comparing

Equations 2 and 58. Pt =
it

1+it
C−γ

t Mt follows from Equation 64. Λt = C−γ
t is the households

51



marginal utility from consumption. Finally, Mit =
1

zitAt

wit

Pt
=

ϕitC
γ
t

zitAt
follows from Equation

59.

A.4 Proof of Theorem 2

Proof. We begin by characterizing log-linear equilibria, which is achieved by the following

Lemma:

Lemma 1 (Macroeconomic Dynamics with Supply Functions). If all firms use log-linear

supply functions of the form in Equation 20, output in the unique log-linear temporary equi-

librium follows:

logCt = χ̃0,t +
1

γ

κA
t

1− ω1,t

(
η − 1

γ

)
(1− κA

t )
logAt +

1

γ

(1− κM
t )(1− ηω1,t)

1− ω1,t

(
η − 1

γ

)
(1− κM

t )
logMt (74)

and the aggregate price in the unique log-linear temporary equilibrium is given by:

logPt = χ0,t −
κA
t

1− ω1,t

(
η − 1

γ

)
(1− κA

t )
logAt +

κM
t + ω1,t

γ
(1− κM

t )

1− ω1,t

(
η − 1

γ

)
(1− κM

t )
logMt (75)

where χ0,t and χ̃0,t are constants that depend only on parameters (including α1,t) and past

shocks to the economy.

Proof. We suppress dependence on t for ease of notation. Consider a plan:

log pi = log α̃0,i + α1 log qi (76)

where α̃0,i = eα0,i . The demand-supply relationship that the firm faces is:

log pi = −1

η
(log qi − log Ψ) + logP (77)

The realized quantity therefore is:

log qi =
−η

1 + ηα1

log α̃0,i +
1

1 + ηα1

log ΨiP
η (78)

and the realized price is:

log pi =
1

1 + ηα1

log α̃0,i +
α1

1 + ηα1

log ΨiP
η (79)
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It is useful to make the change of variables ω1 =
α1

1+ηα1
, which implies that we may write

log pi = (1− ηω1) log α̃0,i + ω1 log ΨiP
η (80)

Our goal is to express dynamics only as a function of ω1. We first find the optimal α0,i in

terms of ω1. The firm therefore solves:

max
α̃0,i

Ei

[
Λ
(pi
P

−Mi

)(pi
P

)−η

Ψi

]
(81)

Substituting for the realized price using the demand-supply relationship yields:

max
α̃0,i

E

[
Λ

(
α̃1−ηω1

0,i

P
(ΨiP

η)ω1 −Mi

)
α̃η2ω1−η
0,i (ΨiP

η)1−ηω1

]
(82)

The optimal α̃0,i is:

α̃1−ηω1

0,i =
η

η − 1

Ei[ΛMi (ΨiP
η)1−ηω1 ]

Ei[
Λ
P
(ΨiP η)1−ηω1+ω1 ]

(83)

Substituting back into the realized price yields:

pi =
η

η − 1

Ei[ΛMi (ΨiP
η)1−ηω1 ]

Ei[
Λ
P
(ΨiP η)1−ηω1+ω1 ]

(ΨiP
η)ω1 (84)

We may express this only in terms of P by using Proposition 1, where we let I = 1+i
i

for

ease of notation:

pi =
η

η − 1

Ei

[
ϕ(ziA)

−1
(
ϑiI

− 1
γP− 1

γM
1
γP η

)1−ηω1
]

Ei

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1ϑ1+ω1−ηω1P (η− 1

γ )(1+ω1−ηω1)
]

×
(
ϑiI

− 1
γM

1
γP η− 1

γ

)ω1

(85)

Given the ideal price index formula (Equation 13), P must satisfy the aggregation:

P 1−η = E
[
ϑip

1−η
i

]
(86)

where the expectation is over the cross-section of firms. We guess and verify that the

aggregate price is log-linear in aggregates

logP = χ0 + χA logA+ χM logM (87)
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Moreover, if the pi are log-normally distributed (we will verify this below), then:

logP = E[log pi] +
1

2(1− η)
Var((1− η) log pi) + constants (88)

We first simplify the numerator of the first term by collecting all the terms involving sAi

and sMi :

logEi

[
ϕi(ziA)

−1
(
ϑI−

1
γP− 1

γM
1
γP η

)1−ηω1
]
=

[
−κA + κA

(
η − 1

γ

)
χA(1− ηω1)

]
sAi

+

[
χM

(
η − 1

γ

)
(1− ηω1)κ

M +
1

γ
(1− ηω1)κ

M

]
sMi + constants

(89)

where the constants are independent of signals. We similarly simplify the denominator of

the second term:

logEi

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1ϑ1+ω1−ηω1P (η− 1

γ )(1+ω1−ηω1)
]
=[

χA

(
η − 1

γ

)
(1 + ω1 − ηω1)κ

A

]
sAi

+

[[
1

γ
(1 + ω1 − ηω1)− 1

] (
κM
)
+ χM

(
η − 1

γ

)
(1 + ω1 − ηω1)

(
κM
)]

sMi

+ constants

(90)

where the constants are again independent of signals. Finally, we can simplify the last term:

log
(
ϑiI

− 1
γM

1
γP η− 1

γ

)ω1

= ω1χA

(
η − 1

γ

)
logA+ ω1

[
χM

(
η − 1

γ

)
+

1

γ

]
logM + constants

(91)

where the constants are independent of the aggregate shocks. Hence, log pi is indeed normally

distributed and its variance is independent of the realization of aggregate shocks. We can

now collect terms to verify our log-linear guess. Substituting the resulting expression for

log pi and our guess for logP from Equation 87 into Equation 88, and solving for χA by

collecting coefficients on logA yields:

χA = − κA

1− ω1

(
η − 1

γ

)
(1− κA)

(92)
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We may similarly solve for χM :

χM =
κM + ω1

γ
(1− κM)

1− ω1

(
η − 1

γ

)
(1− κM)

(93)

This proves the dynamics for the price level. The dynamics for consumption then follow

from Proposition 1.

With this characterization in hand, by Equation 74 and market clearing Ct = Yt, we

have:

logMt =
1

χ̃M,t

(log Yt − χ̃A,t logAt − χ̃0,t) (94)

Substituting for logMt in Equation 75 and defining log P̄t = χ0,t−ϵSt χ̃0,t and δt = χA,t−ϵSt χ̃A,t

then yields Equation AS:

logPt = log P̄t + ϵSt log Yt + δt logAt (95)

Doing a similar substitution for logAt in Equation 74 then yields Equation AD:

logPt = log

(
it

1 + it

)
− ϵDt log Yt + logMt (96)

Completing the proof.

A.5 Proof of Theorem 3

Proof. We suppress dependence on t for ease of notation. We have χM and χA as a function

of ω1 from Lemma 1. We also know that:

ω1 =
σMi,z + σP,z

σ2
z

(97)
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from Equation 54. As zi = ϑi

(
i

1+i

) 1
γ M

1
γP η− 1

γ and Mi = ϕi(ziA)
−1 i

1+i
M
P
, we have that:

σMi,z = Cov

(
−(1 + χA) logA+ (1− χM) logM,

(
η − 1

γ

)
χA logA+

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

)
= −

(
η − 1

γ

)
χA(1 + χA)σ

2
A + (1− χM)

(
1

γ
+

(
η − 1

γ

)
χM

)
σ2
M

σP,z = Cov

(
χA logA+ χM logM,

(
η − 1

γ

)
χA logA+

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

)
=

(
η − 1

γ

)
χ2
Aσ

2
A + χM

(
1

γ
+

(
η − 1

γ

)
χM

)
σ2
M

σ2
z = σ2

ϑ +

(
η − 1

γ

)2

χ2
Aσ

2
A +

(
1

γ
+

(
η − 1

γ

)
χM

)2

σ2
M

(98)

Thus:

ω1 =
−(η − 1

γ
)χAσ

2
A + ( 1

γ
+ (η − 1

γ
)χM)σ2

M

σ2
ϑ + (η − 1

γ
)2χ2

Aσ
2
A + ( 1

γ
+ (η − 1

γ
)χM)2σ2

M

(99)

Note that the optimal ω1 is common across all firms i. We may express this in fully reduced

form as:

ω1 = T (ω1) =
(η − 1

γ
) κA

1−ω1(η− 1
γ )(1−κA)

σ2
A + ( 1

γ
+ (η − 1

γ
)

κM+
ω1
γ
(1−κM )

1−ω1(η− 1
γ )(1−κM )

)σ2
M

σ2
ϑ + (η − 1

γ
)2
(

κA

1−ω1(η− 1
γ )(1−κA)

)2

σ2
A + ( 1

γ
+ (η − 1

γ
)

κM+
ω1
γ
(1−κM )

1−ω1(η− 1
γ )(1−κM )

)2σ2
M

(100)

or

ω1 = T (ω1) =

(η− 1
γ )κA

1−ω1(η− 1
γ )(1−κA)

σ2
A +

1
γ
+(η− 1

γ )κM

1−ω1(η− 1
γ )(1−κM )

σ2
M

σ2
ϑ +

(
(η− 1

γ )κA

1−ω1(η− 1
γ )(1−κA)

)2

σ2
A +

(
1
γ
+(η− 1

γ )κM

1−ω1(η− 1
γ )(1−κM )

)2

σ2
M

(101)

A.6 Proof of Proposition 2

Proof. We first establish equilibrium existence. First, we observe that Tt is a continuous func-

tion. The only possible points of discontinuity are: ωM
1,t =

1
(η− 1

γ
)(1−κM

t )
and ωA

1,t =
1

(η− 1
γ
)(1−κA

t )
.

However, at these points limω1,t→ωM
1,t
Tt(ω1,t) = limω1,t→ωA

1,t
Tt(ω1,t) = Tt(ω

M
1,t) = Tt(ω

A
1,t) = 0.

Second, we observe that limω1,t→−∞ Tt(ω1,t) = limω1,t→∞ Tt(ω1,t) = 0. Consider now the func-

tion Wt(ω1,t) = ω1,t − Tt(ω1,t). This is a continuous function, limω1,t→−∞ Wt(ω1,t) = −∞,

and limω1,t→∞Wt(ω1,t) = ∞. Thus, by the intermediate value theorem, there exists an ω∗
1,t
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such that Wt(ω
∗
1,t) = 0. By Theorem 3, ω∗

1,t defines a log-linear equilibrium.

We now show that there are at most five log-linear equilibria. For ω1,t ̸= ωA
1,t, ω

M
1,t (neither

of which can be a fixed point), we can rewrite Equation 28 as:

ω1,t

[
σ2
ϑ,t

(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2

+
(
σA
t|s
)2(

η − 1

γ

)
κA
t

(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2

+
(
σM
t|s
)2(1

γ
+

(
η − 1

γ

)
κM
t

)(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2
]

=
(
σA
t|s
)2(

η − 1

γ

)
κA
t

(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)
+
(
σM
t|s
)2(1

γ
+

(
η − 1

γ

)
κM
t

)(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)
(102)

This is a quintic polynomial in ω1,t, which has at most five real roots. Thus, by Theorem 3,

there are at most five log-linear equilibria.

A.7 Proof of Corollary 5

Proof. We drop time subscripts for ease of notation. Substituting η = 1
γ
in Equation 28

yields:

ω1 =

1
γ

ρ2 +
(

1
γ

)2 (103)

Substituting this into Equation 23 yields:

ϵSt = γ
κM
t

(1− κM
t )

+
1

γρ2(1− κM
t )

(104)
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A.8 Proof of Corollary 6

We drop time subscripts for ease of notation. The first statement follows directly from

Equation 28. Furthermore, using Equation 28, as σM
t|s → ∞, ω1 must solve:

ω1 =
1− ω1

(
η − 1

γ

) (
1− κM

)
1
γ
+
(
η − 1

γ

)
κM

=
γ

1 + (ηγ − 1)κM
+

(
1− ηγ

1 + (ηγ − 1)κM

)
ω1

=
1

η

(105)

This proves the second statement. As σA
t|s → ∞ and ηγ ̸= 1, ω1 must solve:

ω1 =
1− ω1

(
η − 1

γ

) (
1− κA

)(
η − 1

γ

)
κA

=
γ

(ηγ − 1)κA
+

(
1− 1

κA

)
ω1

=
1

η − 1
γ

(106)

This proves the third statement.

A.9 Proof of Proposition 3

Proof. By Theorem 3, The map describing equilibrium ω1,t is invariant to λ for λ > 0.

Thus, ES
t (λ) is constant for λ > 0. If λ = 0, there are potentially many equilibria in supply

functions. Nevertheless, from the proof of Theorem 1, we have that firms set pit/Pt =
η

η−1
Mit =

η
η−1

Cγ
t /At under any optimal supply function. This implies that η

η−1
Cγ

t /At = 1,

and so money has no real effects, which implies that ϵSt = ∞.
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B Supply Function Choice with Multiple Inputs, De-

creasing Returns, Monopsony, and Beyond Isoelas-

tic Demand

In this appendix, we generalize the firm’s partial-equilibrium supply schedule problem in

two ways. First, we enrich both its technology and inputs by allowing for many inputs,

decreasing returns to scale, and monopsony power. Second, we enrich the demand it faces

by decoupling the own-price elasticity and the cross-price elasticity and allowing for non-

isoelastic demand curves that feature endogenous markups (allowing for Marshall’s Second

and Third laws of demand). In both cases, we show that our core insights generalize. In the

interests of brevity, we leave embedding these generalizations in general equilibrium to future

research, though it is clear to see how one could do this by leveraging our main analysis.20

B.1 Multiple Inputs, Decreasing Returns, and Monopsony

In this section, we generalize our baseline model of supply function choice to allow for

multiple inputs, decreasing returns, and monopsony. We find that: (i) supply functions

remain endogenously log-linear and (ii) decreasing returns and monopsony flatten the optimal

supply schedule.

Primitives. Consider the baseline model from Section 2 with two modifications. First, the

production function uses multiple inputs with different input shares and possibly features

decreasing returns-to-scale:

q = Θ
I∏

i=1

xai
i (107)

where xi ∈ R+, ai ≥ 0, and
∑I

i=1 ai ≤ 1. Moreover, suppose that the producer potentially

has monopsony power and faces an upward-sloping factor price curve such that the price of

acquiring any input i when the firm demands xi units is given by p̃i(xi) = pxix
bi−1
i , where

pxi ∈ R++ and bi ≥ 1. The case of no monopsony, or price-taking in the input market, occurs

when bi = 1. Thus, the cost of acquiring each type of input is given by:

ci(xi) = pxix
bi
i (108)

The firm believes that (Ψ, P,Λ,Θ, px) is jointly log-normal.

20The only complication with endogenous markups would be the endogenous non-log-linearity of the
optimal supply curve. This would have to be dealt with via either approximation arguments or numerical
methods, or both.
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The Firm’s Problem. We begin by solving the firm’s cost minimization problem:

K(q; Θ, px) = min
x

I∑
i=1

pxi
xbi
i s.t. q = Θ

I∏
i=1

xai
i (109)

This has first-order condition given by:

λ =
bipxi
ai

xbi
i q

−1 (110)

Which implies that:

K(q; Θ, px) = λq
I∑

i=1

ai
bi

(111)

Moreover, fixing i, the FOC implies that we may write for all j ̸= i:

xj =

 bipxi
ai

bjpxj
αj

 1
bj

x
bi
bj

i (112)

By substituting this into the production function we have that:

q = Θx
ai+bi

∑
j ̸=i

aj
bj

i

∏
j ̸=i

 bipxi
ai

bjpxj
αj


αj
bj

(113)

which implies that:

xi =


q

Θ
∏

j ̸=i

(
bipxi
ai

bjpxj
αj

)αj
bj



1

ai+bi
∑

j ̸=i
aj
bj

(114)

Returning to the FOC, we have that the Lagrange multiplier is given by:

λ = q
−1+ 1∑I

i=1
ai
bi
bipxi
ai

Θ
∏
j ̸=i

 bipxi
ai

bjpxj
αj


αj
bj


−1∑I

i=1

aj
bj

(115)

Which then yields the cost function:

K(q; Θ, px) = MPq
1
δ (116)
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where:

δ =
I∑

i=1

ai
bi

and M = P−1

(
Θ

I∏
i=1

(
bipxi

αi

)αj
bj

) 1∑I
i=1

ai
bi

I∑
i=1

ai
bi

(117)

and we observe that M is log-normal given the joint log-normality of (Θ, px).

Turning to the firm’s payoff function, we therefore have:

E
[
Λ
( p

P
q −Mq

1
δ

)]
(118)

Thus, the problem with multiple inputs, monopsony, and decreasing returns modifies the

firms’ original payoff by only introducing the parameter δ. Helpfully, observe that δ = 1

when: (i) there are constant returns to scale
∑I

i=1 ai = 1 and (ii) there is no monopsony

bi = 1 for all i.

Given this, we can write the firm’s objective as:

J(p̂) =

∫
R4
++

Λ

(
p̂(z)1−η

P
z −Mz

1
δ p̂(z)−

η
δ

)
dG (Λ, P,M, z) (119)

And, as before, we study the problem:

sup
p̂:R+→R++

J(p̂) (120)

By doing this, we obtain a modified formula for the optimal supply function:

Proposition 4 (Optimal Supply Schedule With Multiple Inputs, Decreasing Returns, and

Monopsony). Any optimal supply schedule is almost everywhere given by:

f(p, q) = log p− ω0 − log δ

1− ηω1

− η
(
ω1 +

1−δ
δ

)
1− ηω1

log q (121)

where ω0 and ω1 are the same as those derived in Theorem 1. Thus, the optimal inverse

supply elasticity is given by:

α̂1 =
ησ2

P + σM,Ψ + σP,Ψ + ησM,P

σ2
Ψ − ησM,Ψ + ησP,Ψ − η2σM,P

(
1 +

1− δ

δ

σ2
Ψ + η2σ2

P + 2ησΨ,P

σM,Ψ + ησM,P + σP,Ψ + ησ2
P

)
(122)

Proof. Applying the same variational arguments as in the Proof of Theorem 1, we obtain

that p̂(t) must solve:

(η − 1)E[ΛP−1|z = t]tp̂(t)−η =
η

δ
E[ΛM|z = t]t

1
δ p̂(z)−

η
δ
−1 (123)
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Which yields:

p̂(t) =

(
δ−1 η

η − 1

E[ΛM|z = t]

E[ΛP−1|z = t]

) 1

1+η( 1−δ
δ )

t

1−δ
δ

1+η( 1−δ
δ ) (124)

Thus, we have that:

log p =
1

1 + η
(
1−δ
δ

) (ω0 − log δ) +
1

1 + η
(
1−δ
δ

) (ω1 +
1− δ

δ

)
log z (125)

where ω0 and ω1 are as in Theorem 1. Rewriting as a supply schedule, we obtain:

log p =

1

1+η( 1−δ
δ )

(ω0 − log δ)

1− η

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

) + 1

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

)
1− η

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

) log q (126)

Which reduces to the claimed formula.

Thus, when the supply curve is initially upward-sloping (ω1 ∈ [0, η−1]), the introduction

of decreasing returns and/or monopsony unambiguously reduces the supply elasticity and

makes firms closer to quantity-setting.

B.2 Beyond Isoelastic Demand

Isoelastic demand imposes both that the firm’s own price elasticity of demand and its cross-

price elasticity of demand are constant. In this appendix, we show how to derive optimal

supply functions in closed form when the firm’s own price elasticity of demand varies. This

allows the demand curve to satisfy Marshall’s second law of demand that the price elasticity

of demand is increasing in the price as well as Marshall’s third law of demand that the rate

of increase of the price elasticity goes down with the price. We show that uncertainty about

demand, prices, and marginal costs continue to operate in a very similar fashion. However,

due to endogeneity of the optimal markup, the optimal supply schedule now ceases to be

log-linear.

To capture these features, suppose that demand is multiplicatively separable: d(p,Ψ, P ) =

z(Ψ, P )ϕ(p) for some function ϕ such that pϕ′′(p)/ϕ′(p) < −2. This latter condition is

satisfied by isoelastic demand exactly under the familiar condition that η > 1 and ensures

the existence of a unique optimal price. We further assume that z(Ψ, P ) = ν0Ψ
ν1P ν2 for

ν0, ν1, ν2 ∈ R \ {0}. This makes firms’ uncertainty about the location of their demand curve

log-normal. This assumption does rule out non-separable demand, such as the demand

system proposed by Kimball (1995). However, it is important to note that this demand

system is motivated by evidence on the firm’s own price elasticity, which is governed by
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ϕ, and not the cross-price elasticity, which is governed by ν2. Thus, our proposed demand

system is equally able to capture facts about the firms’ own price elasticity as the one

proposed in Kimball (1995) (or the richer structures proposed by Fujiwara and Matsuyama,

2022; Wang and Werning, 2022).

Under this demand system, we can derive a modified formula for the optimal supply

curve which is now no longer log-linear, but continues to be governed by similar forces:

Proposition 5. If demand is multiplicatively separable, then any optimal supply function is

almost everywhere given by:

f(p, q) = log q + α̂0 − log

(
ϕ(p)

{
p

[
1 +

ϕ(p)

pϕ′(p)

]} 1
ω̂1

)
(127)

where:

ω̂1 =
ν1(σM,Ψ + σP,Ψ) + ν2(σ

2
P + σM,P )

ν2
1σ

2
Ψ + ν2

2σ
2
P + 2ν1ν2σΨ,P

(128)

Proof. Applying the same variational arguments as in Theorem 1, we obtain that:

p̂(z) +
ϕ(p̂(z))

ϕ′(p̂(z))
=

E[ΛM|z]
E[ΛP−1|z] (129)

where the condition pϕ′′(p)/ϕ′(p) < −2 yields strict concavity of the objective and makes

p̂(z) the unique maximizer. Taking logarithms of both sides and evaluating the conditional

expectations as per Theorem 1, we obtain that:

log

(
p̂(z)

[
1 +

ϕ(p̂(z))

p̂(z)ϕ′(p̂(z))

])
= ω̂0 + ω̂1 log z (130)

where ω̂1 =
σM,z+σP,z

σ2
z

, which yields Equation 128. Using log z = log q − log ϕ(p) and rear-

ranging yields Equation 127.

Demand uncertainty and price uncertainty enter the same way as before, via ω̂1, and

the intuition is the same. However, there are now two distinct notions of market power

and they therefore operate in a more subtle way. First, consider the role of the cross-price

elasticity of demand ν2. When ν2 is higher, the firm’s price is ex post more responsive to

changes in others’ prices. Second, consider the role of the own-price elasticity of demand(
pϕ′(p)
ϕ(p)

)−1

. This induces non-linearity of the optimal supply schedule to the extent that it

is not constant. This is because the firm’s optimal markup changes as it moves along its

demand curve.
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C Additional Tables and Figures

Figure 7: Estimates of Time-Varying Uncertainty
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Note: Both panels plot our quarterly time-series estimates of uncertainty, estimated as described
in Section 5.1. All lines except for “Demand” (solid blue) are one-quarter-ahead volatility predic-
tions from a constant conditional correlations (CCC) GARCH model. The “Demand” estimates
combine the GARCH model’s predictions for real GDP uncertainty and TFP uncertainty with an
assumption about the relationship between microeconomic (demand) volatility and macroeconomic
(productivity) uncertainty, as described in the main text. The left plot shows all series on a com-
mon scale, and the right plot zooms in on the series other than demand. Both plots feature spikes
that are off the scale of the graph during the Covid-19 lockdown.
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Figure 8: The Slope of Aggregate Supply (Annual-Frequency Calculation)
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Note: This Figure plots estimates of the inverse elasticity of aggregate supply as measured by
Equations 39 and 40. These estimates correspond to our secondary calculation using an annual-
frequency GARCHmodel and a direct measure of microeconomic (demand) uncertainty from Bloom
et al. (2018). The blue dashed line indicates the estimates of Hazell et al. (2022), based on state-
level estimates of consumer prices and unemployment and an identification strategy that isolates
local demand shocks (columns 3 and 4, panel B, of Table II). The red dotted line indicates the
estimates of Ball and Mazumder (2011), based on aggregate data (column 4 of Table 3).

Figure 9: The Slope of Microeconomic Supply
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Note: This Figure plots estimates of the slope of microeconomic supply as measured by Equation
39. These estimates are an input to our calculation of the slope of aggregate supply (Figure 4).
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Figure 10: The Slope of Aggregate Supply Since World War II

1950 1960 1970 1980 1990 2000 2010 2020

Time (Quarters)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

εS t
,

A
gg

re
ga

te
S

u
p

p
ly

S
lo

p
e

Note: This Figure plots estimates of the inverse elasticity of aggregate supply as measured by
Equations 39 and 40. In this calculation, in contrast to the calculation of Figure 4, we extend the
calculation back to 1947:Q2. The elasticity of aggregate supply is off the scale of the graph from
1951:Q1 to 1952:Q2. Note that the estimates from 1960 onward numerically differ from the ones in
Figure 2 because we re-estimate the GARCH model for macroeconomic uncertainty over the larger
sample.

66



Figure 11: Aggregate Supply with Pseudo-out-of-sample Uncertainty
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Note: This Figure plots estimates of the inverse elasticity of aggregate supply as measured by
Equations 39 and 40. In this calculation, in contrast to the calculation of Figure 4, we estimate
uncertainty about variables in quarter t using a maximum-likelihood estimate of the model with
data only up to quarter t−1. To cover the beginning of the sample, we use data starting in 1947:Q2.
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Figure 12: Sensitivity of Aggregate Supply Estimates to Parameters
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(c) Flattening from 1978-1990 vs. 1991-2018
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(d) Flattening from 1978-1990 vs. 1991-2018
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Note: This Figure plots the sensitivity of the inverse elasticity of aggregate supply to the elasticity
of substitution η (Panel a), to varying ratios of microeconomic to macroeconomic uncertainty R
(Panel b), and to varying calibrations of wealth effects (Panel c). Panels (c) and (d) each plot a
heat map for the difference in the average slope for aggregate supply from 1970-1980 to 1991-2018,
varying different pairs of parameters. In each of these panels, the white “x” denotes our baseline
calibration.
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