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ABSTRACT. Is credit expansion a sign of desirable financial deepening or the prelude to an

inevitable bust? We study this question in modern US data using a structural VAR model of

10 monthly-frequency variables, identified by heteroskedasticity. Negative reduced-form

responses of output to credit growth are caused by endogenous monetary policy response

to credit expansion shocks. On average, credit and output growth remain positively associ-

ated. “Financial stress” shocks to credit spreads cause declines in output and credit levels.

Neither credit aggregates nor spreads provide much advance warning of the 2008-9 crisis,

but spreads improve within-crisis forecasts.

I. INTRODUCTION

Credit aggregates tend to expand faster than GDP in the long run. Studies of economic

development sometimes use the ratio of credit to GDP as a measure of “financial depth”

thought to boost economic growth.1 On the other hand a number of recent studies claim

to have demonstrated a predictive relation between rapid credit growth and low future

GDP growth or higher likelihood of crisis.2

Both mechanisms, of course, could be consistent with the same reduced-form evi-

dence. A useful analogy is the relationship between interest rates and inflation. The

structural VAR literature on monetary policy effects succesfully separates two opposite-

sign mechanisms connecting these variables. Policy-generated increases in rates reduce

inflation, while rates on average endogenously rise with inflation to compensate investors

Date: August 31, 2020.
We are grateful for useful comments from Yuriy Gorodnichenko, Atif Mian, Emil Verner, and Claudio Bo-
rio, as well as from seminar participants at Princeton and the Federal Reserve Bank of New York. This
document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License. http://creativecommons.org/licenses/by-nc-sa/3.0/.
1Perspectives on this topic are found, for example, in Shaw (1973), McKinnon (1973), Goldsmith (1969) and
Rajan and Zingales (1998). A summary of the related literature is available in World Bank (2012), p.23-25.
2For example, Mian, Sufi and Verner (2017), Schularick and Taylor (2012), Jordà, Schularick and Taylor
(2014), Borio (2012) and Drehmann and Juselius (2014).
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for inflation-generated losses. This pattern consistently emerges when a number of dif-

ferent identifying assumptions are imposed on multiple-equation models.

It is reasonable to suspect that the relationship between credit market outcomes (quan-

tities and prices) and macro aggregates similarly involves multiple, opposite-signed causal

mechanisms. An important such mechanism could be monetary policy itself, which

strongly affects and responds to credit conditions. Unraveling this and other feedbacks

in the data is essential for probing the policy implications of predictive findings. Is “bad

credit growth” the exception or the norm in modern economies? Should central banks

raise rates when credit expands rapidly? Would monitoring credit conditions signifi-

cantly improve policy and/or macro forecasting?

We approach these challenges in a way that is inspired by the monetary literature: with

a large-scale structural vector autoregressive (SVAR) model that jointly identifies multi-

ple causal channels. Our focus is US data from the 1970s to the present day for credit

aggregates, credit spreads, and standard macro variables. The familiarity of this context,

and the large quantitative and narrative literature about it, allows a simple identification

strategy (due, in economics, to Rigobon, 2003): assuming that different shocks’ relative

variance changes across notable episodes in recent history (e.g., the Volcker disinflation

versus the Great Moderation) while macro dynamics remain constant. We began by using

other identifying restrictions, yet modeling this time-varying variance because it was so

clearly needed to fit the data. But we discovered as we proceeded that identification via

heteroskedasticity approach produced stable and interpretable results without the addi-

tional restrictions.

We find some evidence of long-run negative response to credit growth. But essentially

all of this can be attributed to endogenous monetary tightening in response to associated

medium-run output and inflation growth. We validate, in simulation, how omitting these

full model dynamics would lead to misleading results in small, reduced-form models.

Shocks to credit spreads generatee substantial contractions in output and credit, as do

monetary policy shocks. The monetary policy shocks have somewhat larger effects, on

average, than the spread shocks. The monetary policy shocks explain a substantial part of

the variation in the credit aggregates and in one of the spread variables. These shocks are
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separately and stably distinguished from one another because of their variability peaking

at different points in history (e.g., the Volcker disinflation versus the Great Recession).

We also explore how useful our model would be in pseudo-out-of-sample forecasting

and what the contribution to prediction accuracy of the credit and spread variables might

be. We find that credit aggregates are not particularly valuable for improving fit. Credit

spreads are valuable for matching the behavior of the economy in the midst of crisis but,

less so outside of this context. Neither spreads nor credit aggregates provide an “early

warning indicator” over longer horizons.

Related literature. Much of the existing empirical literature in this area has used short

lists of variables and has not attempted to distinguish several channels of interaction be-

tween financial variables and the macroeconomy, including the one modulated by mone-

tary policy. Studies of the predictive power of credit growth have primarily used single-

equation projection methods (e.g., Mian, Sufi and Verner, 2017; Jordà, Schularick and Tay-

lor, 2014, 2015) or binary outcome (i.e., crisis or no crisis) predictive models (e.g., Schular-

ick and Taylor, 2012; Drehmann and Juselius, 2014).

Jordà, Schularick and Taylor (2013) uses 11 variables and estimates impulse responses

by local projection. It uses no spread variables and focuses on whether knowledge of

whether a recession is “financial” changes forecasts of the length or depth of the reces-

sion. Mian, Sufi and Verner (2017), like this paper, includes data outside of identified

“crisis episodes.” It also contains a small-scale multivariate example, with three variables

(real GDP, household credit to GDP ratio, and business credit to GDP ratio), but does not

endogenize interest rate dynamics or separately identify monetary policy.

Our approach has three benefits and two costs relative to this literature. On the benefits

side, we use (i) more comprehensive data on different macro and financial aggregates at

(ii) a higher frequency combined with (iii) a more complex identification strategy. This

allows us to more precisely hone in on the causal effect of “credit shocks,” differentiated

from other identified macro shocks. The costs are that we (i) focus on a single country, the

United States and (ii) have a shorter time-period of study. We leave the possible extension

of our more structural methods, with appropriate flexibility to capture heterogeneity in

economic structure and/or monetary regimes across countries and longer time periods,

to future work.
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Studies focused on the information in credit spreads, similarly to the aforementioned

credit growth literature, have looked extensively at single-equation models (e.g., Lopez-

Salido, Stein and Zakrajsek, 2015; Krishnamurthy and Muir, 2017) and reduced form

multi-equation models (e.g., Gilchrist, Yankov and Zakrajšek, 2009; Gilchrist and Za-

krajšek, 2012). Gertler and Karadi (2015) and Caldara and Herbst (2016) introduce credit

spread variables into structurally identified, multiple-equation frameworks with mone-

tary policy. But these authors have a narrower focus on identifying and interpreting mon-

etary policy shocks, relative to the rest of the system, and do not discuss the role of credit

aggregates. Krishnamurthy and Muir (2017) does look at both aggregates and spreads

in the same framework. But their main specifications, single-equation models which can

include interactions (non-linear transformations) of credit growth and credit spreads, do

not solve the endogeneity problem. They document increased negative skewness of fu-

ture GDP growth forecast errors following an increase in spreads, which our model can-

not account for. Extending our model to allow such asymmetry in shock distributions is

an interesting challenge for future research.

There have been other studies in this area based on fully interpreted structural dynamic

stochastic general equilibrium models, which of course have included estimated effects

of monetary policy.3 These DSGE models, though, have not considered as many finan-

cial variables jointly as we consider here and have imposed more, and more arguable,

identifying restrictions than we impose here.

Stock and Watson (2012) use a six-factor dynamic factor model estimated from a collec-

tion of hundreds of time series to study some questions that overlap with those we ad-

dress in this paper. They focus attention on interpreting the 2008-12 crash and recovery,

concluding that it seems to be best explained as unusually large shocks feeding through a

stable dynamic structure, which matches the assumptions underlying our modeling ap-

proach. When they attempt structural interpretation of their model, they use an external

3Christiano, Motto and Rostagno (2014), for instance, estimate a monetary DSGE model based on the con-
tract enforcement friction of Bernanke, Gertler and Gilchrist (1999) and find that “risk shocks” which can
be measured in observed credit spreads drive a significant portion of U.S. business cycle dynamics. The
model uses data on credit spreads and firm credit in addition to “standard” macro aggregates. Del Ne-
gro and Schorfheide (2013) provide a detailed comparison of the forecasting performance of this model, a
standard Smets and Wouters (2007) DSGE model, and various reduced-form models.
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instruments approach. We discuss this approach to identification and contrast it with our

own in section II.2.1 below.

Details and roadmap. Section II describes the econometric model in detail. Our base-

line specification is a Bayesian SVAR with heteroskedasticity and non-normal (Student’s

t) distributed errors. Section III describes the data and esitmation procedure. We use

monthly data on industrial production (IP), the personal consumption expenditure defla-

tor (P) household credit (HHC) business loan credit (BC), money supply (M1), the federal

funds rate (R), a commodity price index (PCM), the 10 year over 3-month Treasury term

spread (TS), the Gilchrist and Zakrajšek (2012) corporate bond spread (GZ) and the 3-

month Eurodollar over Treasury spread (ES). The sample period runs from January 1973

to June 2015.

Section IV lays out our main results, the identified shocks and impulse responses. Sec-

tion V demonstrates, via simulation, how such results are consistent with credit growth

predicting future slowdowns or crises in single-equation “prediction regressions.” Sec-

tion VI conducts the pseudo-out-of-sample forecasting experiments. In Section VII we

summarize variations on our model that we have investigated to check robustness of re-

sults.

There is an online appendix for the paper that includes details of our estimation meth-

ods and results for the variations of our model that we examined as robustness checks.

We refer to relevant sections of the appendix at various points in the main text of the

paper.

II. FRAMEWORK

II.1. The basics. Let yt be an n× 1 vector of observed variables in time periods t ∈ T :=

{1, . . . , T}. We model yt with the following system of equations:

A0yt =
p

∑
j=1

Ajyt−j + C + εt (1)

where A0 is an n× n matrix of simultaneous relationships, (Aj)
p
j=1 are n× n matrices of

coefficients at each lag j, C is an n × 1 vector of constants, and εt is an n × 1 vector of

shocks independent across equations and time.
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The variance of these shocks differs by time period. Let M = {1, . . . , M} identify

regimes over which variances are constant and the function m : T → M map dates to

their respective regime. In each regime the variance of structural shocks is a different

diagonal matrix Λm:

E
[
εtε
′
t
]
= Λm(t) (2)

The coefficients (Aj)
p
j=0 remain fixed over all time periods.

As the model is written, we could multiply the rows of A0 and Λ by scale factors with-

out changing the implied behavior of the data. We impose the restriction

1
M

M

∑
m=1

λi,m(t) = 1 ∀i ∈ {1 . . . n}

where λi,m(t) is the ith diagonal element of Λm(t). This makes the cross-period average

structural variance 1 in each equation. Given such a normalization and the technical

condition that each pair of equations differs in variance in at least one period, we can

uniquely identify all n2 parameters of A0, up to flipping the sign of an entire row, or

permuting the order of rows.4

II.2. Interpretation. These assumptions restrict the economy to respond to shocks in the

same way at all times, but allow the relative size of those shocks and, therefore, the rela-

tive size of their effects on the economy, to change. Plots of impulse responses are implied

always to have the same shape but, across different regimes, different sizes.

The term “identification through heteroskedasticity” may suggest that the place to look

for possible failure of the approach is the possibility of insufficient variability in reduced

form covariance matrices. But that the volatility of macro aggregates and of financial vari-

ables varies over time is not really in doubt. Economists refer to the “Volcker disinflation”

in the early 1980’s, when interest rates were unusually volatile and to the “Great Moder-

ation” during the late 1980’s through the early 2000’s, when macro aggregates in general

4A formal proof of this can be found, for instance, in Lanne, Lütkepohl and Maciejowska (2010) Here is the
basic idea. If Σj is the reduced form residual covariance matrix for regime j, and our assumption of constant
A0 holds, then Σj = A−1

0 Λj(A−1
0 )′. Given covariance matrices from two regimes i and j we can calculate

Σ−1
i Σj = A′0Λ−1

i Λj

(
A−1

0

)′
,

which has the form of an eigenvalue decomposition, with the columns of A′0 the eigenvectors. As long as the
eigenvalues, the diagonal elements of Λ−1

i Λj, are unique (i.e., there is no k, l such that λj,k/λi,k = λj,l/λi,l),
the rows of A0 are therefore uniquely determined up to scale once we know Σi and Σj.
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were less volatile than during the 1960’s and 70’s. Furthermore, if the assumption of con-

stant A(L) were correct, but there was in fact little variation over time in the reduced

form covariance matrices, the identification problem would reveal itself in a flat likeli-

hood function and, therefore, very wide error bands on estimated impulse responses.

The Achilles’ Heel of this approach to identification, then, is not the possibility of little

heteroskedasticity, but rather the possibility that the assumption of constant A(L) is in-

correct. Time variation in A(L) would produce time variation in estimated reduced form

covariance matrices Σ for a model that was fitted under the false assumption of constant

A(L). We provide evidence below that our specification outperforms some models that

allow A(L) to vary.5

II.2.1. Why identification via heteroskedasticity? There are other approaches to making as-

sumptions that allow identification in structural VAR’s. The most common are zero

restrictions on A0, long run response restrictions, sign restrictions on responses, narra-

tive approaches, and “external instruments”. Much of the applied literature has focused

on identifying just one structural shock, usually a monetary policy shock. In this pa-

per, we are aiming at discovering interpretable shocks that correspond to influences of

credit growth and financial market disturbances on the economy, while also distinguish-

ing them from monetary policy shocks. Identification through heteroskedasticy lets us

do this in a straightforward way, with assumptions, described above, that seem to us

plausible.

The external instrument approach requires finding, for each identified structural shock,

an observed variable that is correlated with that shock and not correlated with any other

structural shock. This approach is plausible when the shock is the monetary policy shock

and the instrument is the surprise in the setting of the Federal Funds rate, measured by the

behavior of the Federal Funds futures market in narrow windows of time around a pol-

icy announcements. For the financial market disturbances we are interested in, though,

this approach seems to us impractical or unconvincing. There are plenty of variables that

are likely to be correlated with financial market disturbances, but none that plausibly are

known a priori not to be correlated with any other source of disturbance to the economy.

5Sims and Zha (2006) consider models with a parametric form of time variation in A(L). They find that
posterior odds favor models with a rich specification of time varying heteroskedasticity over models with
their form of time variation in A(L).
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The strength of such assumptions is brought out when the external instrument approach

is formulated, as in Plagborg-Møller and Wolf (2019), as the equivalent set of zero restric-

tions on a structural VAR.

Stock and Watson (2012), like this paper, attempts to separate interpretable sources of

disturbance to the economy. They apply an external instruments approach, trying to iden-

tify 6 named sources of variation. They find that their estimated structural disturbances,

though estimated by a method that assumes structural disturbances are independent, are

strongly correlated. This reflects how difficult it is to find instruments that meet the strin-

gent requirements of this approach to identification.6

The sign restrictions approach to identification uses informal, qualitative beliefs about

the likely shape of impulse responses to structural shocks to achieve partial identifica-

tion. Our approach uses similar qualitative beliefs to attach interpretations to our esti-

mated structural shocks. The difference is that identification through heteroskedasticity

generally allows point identification and consistent estimation, while the sign restrictions

approach does not.

In most of the applied literature on structural VAR’s using other approaches to iden-

tification, time varying heteroskedasticity has not been modeled and constancy of A(L)

has been assumed. The central idea of SVAR modeling is that structural disturbances

should not be cross-correlated. (Otherwise there is a causal mechanism at play that has

been missed by the model structure.) Maintaining that assumption and constancy of A(L)

while allowing for time variation in Σ delivers identification through heteroskedasticy, if

heteroskedasticy is present. Then applying additional restrictions, to implement any of

the other possible approaches to identification leads to a strictly less general model.

We do in appendix section 4 check the correlations of variables we could have used

as monetary policy external instruments with our estimated monetary policy shocks.

The correlations are substantial, and the correlation of the instruments with our non-

monetary-policy structural shocks are much smaller. This suggests that our approach is

6The estimated structural shocks for our model have correlations averaging in absolute value about .01,
with none as big as .1. This reflects our use of monthly data, in which correlations among innovations tend
to be small even in reduced form, and also the fact that our model, which fits well, exploits the assumption
of no correlation in estimation.
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not likely to have given results for monetary policy effects much different from those we

could have obtained with the external instruments approach.

II.2.2. Model for regime switching. Our choice of variance regimes in estimated models

(discussed in Section III and presented in Table 2) is motivated by observed variation

in the time series and outside knowledge about policy changes. We could fairly easily

have allowed for regime changes to evolve as a Markov-switching stochastic process, as

in Sims and Zha (2006). However, so long as the regimes are persistent, few in number,

and well-determined by the data, inference about the model’s dynamics is not likely to

be strongly affected by conditioning on the regime switch dates as if known.7

Note also that our results are not likely to be sensitive to modest changes in the bound-

aries of our assumed regime periods. The equations in footnote 4 would apply even if Σi

and Σj were average values over two regimes of covariance matrices that varied within

regimes. Errors in defining the regimes would tend to weaken results, widening error

bands, by reducing the amount of variation in Σj across regimes, but would not intro-

duce inconsistency.8

II.2.3. Rare events. Finally it is worth commenting on how our specification treats episodes

like the financial crisis or the Volcker disinflation. While our method does implicitly iden-

tify shocks using these big sources of variation, it also under-weights them for estimating

shock transmission (i.e., all other parameters), just as in a regression model generalized

least squares (GLS) model high-residual-variance observations are down-weighted. Our

concerns about having a few influential observations are sufficiently large that we also

explore several distributional assumptions for the structural shocks εt.

7Of course it is plausible that the variance regime switches are not only random, but endogenously deter-
mined. Allowing for that would greatly complicate the model and, since the regime switches are few in the
data, might leave the nature of the regime switch endogeneity ill-determined by the data. We leave this to
future research.
8Sims (2020) provides an argument for this claim. In the case of Gaussian likelihood, inference is based
entirely on sample second moments, and reduced form residuals are consistently estimated regardless of
the pattern of heteroskedasticity. Therefore, if the number observations increases within each regime, all
that is required for consistency is that the expected sample covariance matrix within each regime have
the A−1

0 Λt(A−1
0 )′ form, and that the Λt diagonals show sufficient variability. With the likelihood of inde-

pendent t-distributed structural shocks, large outliers for individual shocks are penalized less than linear
combinations of structural shocks of the same length. This means that even without heteroskedasticity,
in constrast to the normal likelihood, the t likelihood penalizes orthonormal rotations of the structural
shocks and thus allows consistent estimation of A0. This is true even if the structural shocks are in fact not
t-distributed, so long as they are independent and fat-tailed.
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II.3. Distribution of εt. We now return to specifying the model. The correction for het-

eroskedasticity will work best if volatilities mainly change between persistent episodes

or regimes. But it does not allow for the possibility of a few isolated large disturbances

or outliers. For instance, the bankruptcy of Lehman Brothers in September 2008 and the

650 basis point drop in the Federal Funds rate from April to May 1980 generate outliers

of around 6 standard deviations that do not disappear when we allow variance-regime

switches. To guard against such large shocks distorting inference, we consider a specifi-

cation in which structural errors εt are distributed as a mixture of normal distributions.9

In the model notation, we can introduce random parameters ξi,t such that

εi,t ∼ Normal
(

0, λm(t),iξi,t

)
(3)

We can also think of these objects as shocks which capture, in a simple way, a high-

frequency component of volatility that has no persistence across time or correlation across

equations.

Our main results assume the ξit are distributed as inverse-gamma:

ξi,t ∼ Inverse Gamma(shape = α/2, rate = 2/α) . (4)

This implies that each εi,t has an independent Student-t distribution with α degrees of

freedom and unit scale.10

We chose the degrees of freedom of the t distribution to be 5.7, by fitting the sample

distribution of residuals for the Gaussian-errors model.11 Use of the t distribution mainly

changes the statistical properties very far in tails—relative to a normal distribution, the

9The mixture-of-normals assumption has been used in the time series literature to better model large move-
ments in macro variables. Lanne and Lütkepohl (2010) introduce a maximum likelihood approach to esti-
mating a discrete normal mixture SVAR model, and Chiu, Mumtaz and Pinter (2015) describe a Bayesian
Gibbs sampling algorithm with an application to a model with stochastic volatility for U.S. data. Chib
and Ramamurthy (2014) present a Gibbs sampling method for estimating a DSGE model with t-distributed
shocks and Cúrdia, Del Negro and Greenwald (2014) find that the assumption improves the fit of a New
Keynesian DSGE model that already includes low-frequency volatility changes.
10Apendix section 7.2 reports results from an an alternative case with ξi,t as independent k-multinomial,
so that the distribution is a finite mixture of normals. The results from this specification are similar, and it
does not fit as well as the t specification.
11We scaled the distribution of shocks to have unit variance, rather than setting the scale parameter of the
t distribution to 1. All that matters to the likelihood is the shape of these distributions, not their scale, since
A0 can absorb differences in scale. But since our prior is not scale invariant, someone replicating our results
might need to know about this scaling.
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t(5.7) distribution puts 4 times the probability on a three-standard-deviation event but

200,000 times the probability on the six-standard-deviation event. The t implies we ex-

pect to see about two 6-σ residuals in our 10 equations and 510 months of data, while with

Gaussian errors the probability of any 6-σ residuals in our sample is essentially zero. As

we show in appendix section 6, the number of large shocks is greater than the model ex-

pects even with the t assumption, suggesting room for further improvement in modeling

the distribution of shocks.

Instead of adopting such a “two-step” procedure to calibrate the shape and scale of

the t distribution, we could have also explored extensions in which we treated α as an

unknown model parameter and estimated it directly. Here, as in a number of other cases

of possible extensions of the parameter list, the likely improvement in fit and effect on

conclusions did not seem to justify the increased computational burden. Moreover, spec-

ifying the error distrubution exactly “correctly” (and, in the first place, adopting the t

specification instead of the standard Gaussian one), affects more small-sample efficiency

and correct inference than the overall consistency of our results; and we will show later

that our qualitative conclusions are similar also in the Gaussian model, though the the t

model fits much better.

III. ESTIMATION

III.1. Data. Our main specification uses monthly data on 10 time series (listed in Table 1)

from January 1973 to June 2015. We include data from the 1970s and early 1980s because,

as discussed in the previous section, they are a valuable source of identifying variation for

the structural shocks. The lag length p in our model is set to 10. All quantity variables are

in log levels, and interest rates are in decimal units (i.e., 0.01 = 1% = 100 basis points).

Our measures of “household” and “business” credit are based on the Federal Reserve’s

weekly surveys of U.S. commercial banks.12 These data are different from the quar-

terly and annual series, based on a more comprehensive survey of lenders and catego-

rized based on the borrower type (including “households and non-profits,” “nonfinancial

12These are published in the H.8 “Assets and Liabilities of Commercial Banks in the United States” release.
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Description
IP Industrial production
P Personal consumption expenditures price index
HHC Sum of commercial bank real estate and consumer

loans
BC Commercial bank commercial & industrial loans
M1 M1 money supply
R Federal funds rate
PCM CRB/BLS spot (commodity) price index
TS Term spread of 10 year over 3 month Treasuries
GZ Gilchrist and Zakrajšek (2012) bond spread
ES “TED spread” of 3-month Eurodollars over 3 month

Treasuries
TABLE 1. Data series used in model estimation.

noncorporate business,” and “nonfinancial corporate business”), used in some other re-

search.13 Appendix 5.2 includes a more detailed discussion of the differences. Although

our “household credit” series includes commercial real estate loans (which cannot be sep-

arately identified for the entire sample in the data) and our “business credit” data seems

to have more high-frequency variation than the corresponding quarterly series, we be-

lieve these data capture the majority of the low-frequency behaviors that are critical for

existing empirical evidence of their forecasting power.14

The inclusion of three credit spreads (of interest rates over short-term Treasuries) is

meant to capture several possible dimensions of credit market stress: the term spread

captures inflation expectations and uncertainty about future movements in fundamentals,

the bond spread captures tightness in business financing, and the TED spread captures

tightness in bank financing. The first was also expected to, along with the Federal Funds

rate, M1, and commodity prices, provide a sharper identification of a monetary policy

shock, as policy-generated rises in the short rate might be expected to have little effect on,

or even to lower, long rates, if the monetary tightening does succeed in lowering expected

future inflation.

13In particular, the cross-country database, assembled by the Bank of International Settlements uses these
quarterly data.
14One practical complication is dealing with breaks in the credit series introduced by changes in accounting
standards or major entrances to or exits from the commercial bank industry. Our specific calculations for
eliminating these breaks, which are particularly large in the real estate credit series, are detailed in appendix
5.1.
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Start End Description
1 Jan 1973 Sep 1979 Oil crisis and stagflation
2 Oct 1979 Dec 1982 Volcker disinflation
3 Jan 1983 Dec 1989 Major S&L crisis defaults
4 Jan 1990 Dec 2007 Great Moderation
5 Jan 2008 Dec 2010 Financial crisis and Great Recession
6 Jan 2011 Jun 2015 Zero Lower Bound, Recovery from Great Recession

TABLE 2. Dates for variance regimes in full model specification.

III.2. Regime choices. We separate the full sample into six variance regimes described

in Table 2. Our goal in selecting these regimes is to identify episodes in recent history in

which the relative importance of driving sources of economic fluctuations were different,

producing differing covariance matrices for innovations. In our first regime, the 70’s, oil

market disturbances and somewhat erratic monetary policy prevailed. During the second

regime, 1979-82, the Fed under Paul Volcker targeted unborrowed reserves, resulting in

much higher variance of residuals in a policy equation with interest rates on the left. The

third and fourth regimes, 1983-89 and 1990-2007 are sometimes all thought of as part of

the “Great Moderation.” Monetary policy was less erratic and most macro aggregates

became more predictable. We separated the third and fourth regimes based on the idea

that the S&L crisis defaults might have made the earlier period different. The fifth regime

is the financial crisis, in which many macro variables, and especially financial variables,

became more volatile than anywhere else in the sample. And the last, post-crisis, regime

is the period of zero lower bound monetary policy during crisis recovery.

Note that to make identification through heteroskedasticity work what is essential is

that structural innovation variances differ on average across regimes. Defining regimes

poorly, so that innovation variances vary little across regimes, would undermine identi-

fication and lead to wide error bands and ill-determined results. But identification does

not depend on the the regimes exactly capturing all variation in innovation variances.

III.3. Econometric methodology. Equations (1) and (2), combined with the normaliza-

tion of variances, describe a model with n2 free parameters in A0, (M− 1)n free param-

eters in the Λm, and n2p free parameters in the Aj. The t-distributed disturbances add
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Variation in. . . Distribution MDD

None Gaussian 19913
Structural shock variances t 21434
Structural shock variances Gaussian 20712
All of A(L) and A0 Gaussian 20490

TABLE 3. Marginal data densities for four models of the full data sample
(1973:1 to 2015:6). Differences between values are log Bayes factors, or log
posterior odds with equal prior weights on each model. The first line is for
a model with Gaussian shocks, but no variation in A(L) or shock variances
across regimes. The second line is for the main model in the text, with time
variation only in the variances of the structural shocks and t-distributed er-
rors. The third line is the same model with Gaussian-distributed errors. The
fourth line fits a separate unrestricted reduced form model to each period;
though it assumes Gaussianity, this model is otherwise the least restricted.

another nT parameters. We use Bayesian methods to update beliefs about the parameters

conditional on observed data {y1 . . . yT} and initial conditions {y−p−1 . . . y0}.

III.3.1. Priors. For A0 we specify independent Gaussian priors on all elements, centered

around 100 times the identity matrix, with standard deviation 200. For λ·,i = {λ1,i . . . λM,i},
the vector of variances in each equation i, we put a Dirichlet prior (with α = 2) on λ·,i/M.

This restricts each of the relative variances to lie in [0, M] (where M = 6 in our main

model), centers the prior on equal variances, and enforces our normalization that for each

structural shock the relative variances average to one across periods. The centering at

A0 = 100I implies we expect residual variances in each equation to be around .01 in or-

der of magnitude, though with standard deviations of 200 the prior is quite diffuse. We

use a variation of the “Minnesota prior” described in Sims and Zha (1996) on the remain-

ing regression coefficients (described in more detail in appendix section 1).

III.3.2. Posterior sampling. We use a Gibbs sampling method to sample from the poste-

rior distribution of all aforementioned parameters (see appendix section 2 for the details).

This also implies prior and posterior distributions for all (potentially nonlinear) trans-

formations of the coefficients, including the impulse response functions for variable i to

each shock j. In all reported results we display horizon-by-horizon 68% and 90% highest

posterior density regions as error bands.
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III.4. Model fit. Table 3 displays measures of fit for our central model (the second line of

the table) and for variants of the model. The third column shows each model’s log mar-

ginal data density (MDD). The MDD is the integral over the parameter space of the joint

distribution of data and parameters. If we regarded these four models as the full space of

possible models, with equal prior probabilities for the models, the posterior probabilities

on the models would be proportional to the MDD values. The differences between MDD

values, exponentiated, can be interpreted as log odds ratios between the models—that is,

how much more likely is one model than the other to capture the data, taking into account

within-model uncertainty about parameter values.15

The model that comes closest to our main model is the one that differs only by assuming

Gaussian, rather than t-distributed, errors. The Gaussian errors model nonetheless fits

much worse: its posterior probability is implied to be smaller by a factor of over 10300.

Posterior odds ratios among finite collections of models often, as in this case, emerge as

implausibly large or small, because they condition on the list of models being exhaustive.

In fact, we know that in principle we could construct models, for example, that allowed

richer parametric forms for the distribution of shocks, and that probably some variant on

the t or normal distributions would provide a better fit. Nonetheless the MDD values do

provide a useful measure of fit, even if we do not take the odds ratios literally.

The first line of the table refers to a model with no time variation in variances or in

A(L). Since in this case the SVAR is not identified, we estimated this model as a simple

time-invariant reduced form VAR over the whole data set. Comparing this model to the

Gaussian-errors model with time varying variances in row 3, we see again a difference in

log MDD of over 700. Allowing for time varying variances is extremely important for fit.

The bottom line of the table refers to a model with both the coefficients in A(L) and the

residual variances allowed to change at every change in regime. Here again, since there

is no time variation within regimes, the regime-specific SVAR’s are not identified, and

we therefore fit unrestricted reduced form VAR’s to each regime. Each regime has its own

15The priors on A(L) for the first three lines of Table 3 are implemented as dummy observations defining
a prior on the reduced form B(L), together with the normal prior on A0 used in all the SVAR models. For
the fourth line, in which only B(L) is identified, we used the same dummy observations as for the other
three models, plus dummy observations defining an inverse-Wishart prior on the reduced form covariance
matrix of residuals. Since we are comparing models, and formulating a prior with dummy observations, it
is important that we normalized the prior so that it integrated to one in each case.
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prior, so the small number of observations in some regimes creates no numerical problems

in estimation. This model fits worse than the Gaussian SVAR with fixed A(L) on the third

line. Since the third-line model is nested in the fourth-line model, it may seem odd that

the fourh-line model can fit worse. That it does reflects the fact that Bayesian posterior

odds tend to penalize models with larger numbers of free parameters, and this model has

many more free parameters.16

Ideally, we could have calculated MDD’s for models like the first and fourth line mod-

els, but with t-distributed errors. But calculation of MDD’s for models with t errors is

extremely time consuming, and the results would probably be similar to what we see in

this table.17

See appendix section 3.4 for more details on these models and the MDD calculations.

IV. THE STRUCTURAL SHOCKS

This section begins with an overview of the impulse responses. The estimation just

separates them, without giving them interpretations, so as we discuss them we try to

map the shocks into economic interpretations. Then we consider the estimates of time-

varying variance. We finish with a closer look at financial stress build-up and credit

growth.Financial stress, as indexed by rate spreads, is occasionally (but not always) an

important driver of IP fluctuations while the shocks originating in credit growth are much

less important.18

IV.1. The big picture. Figures 1 to 4, in four 5 by 5 “blocks,” show the impulse response

over five years of all 10 variables to the model’s orthogonal structural shocks, scaled to

draws from a unit-scale t distribution with 5.7 degrees of freedom. Since the diagonal of

16We also experimented with a model that allows arbitrary changes across regimes in A0 while the rest
of A(L) remains fixed. This relaxes the main model’s constraint that in every regime Σt has the same
eigenvectors. This model also fits less well than our main model. The model and its MDD are discussed in
appendix sections 7.1 and 3.4
17There is also a conceptual problem in applying the t-errors specification to models in which structural
shocks are not identified. In the SVAR, the residuals are independent univariate t’s. In the reduced form,
the residuals are linear combinations of these structural residuals, which are not distributed as univariate t.
If we took the reduced form residuals as multivariate t, the implied SVAR residuals would be univariate t,
but would no longer be independent.
18This process also resembles at a high level, though differs greatly in the technical implementation, with
recent suggestions by Antolı́n-Dı́az and Rubio-Ramı́rez (2018) and Ludvigson, Ma and Ng (2017) to identify
structural shocks ex post based on matching known events in history.
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Λi is normalized to sum to one across ruegimes, these responses are a kind of average

across regimes.

In principle structural VAR shocks need not be associated with single variables in the

system. However in these monthly data, the reduced form shocks, which are variable-

by-variable innovations, show only modest cross-variable correlations. Since our prior

mildly favors A0 matrices with positive entries on the diagonal, the structural estimates

still have shocks that are not far from being innovations in a single variable. Accordingly,

with one exception, in the discussion and plots below we name shocks by the variable

they are most strongly associated with. The exception is the “interest rate shock”, which

has large contemporaneous effects not just on the short interest rate, but also on the term

spread and the interbank (ES) spread.

We name this shock the “Monetary Policy” shock. Despite the model’s lack of any iden-

tifying zero restrictions on coefficients, this shock emerges as having the characteristics

usually associated with monetary policy shocks. It is the only one that has an immediate

positive R response, a delayed negative IP response, a negative (though ill-determined)

long run P response, negative responses of M1 and the two credit aggregates, and a nega-

tive response of the term spread (as would be expected if the shock raises current interest

rates and lowers expectations of future inflation). The contemporaneous movement of

credit spreads, and possibly policy amplification through these channels, corroborates

the general findings of Gertler and Karadi (2015) and Caldara and Herbst (2016).

Our median estimated response of IP to the contractionary monetary policy shock is

somewhat stronger and more persistent than most estimates in the literature. We think

this could reflect better identification of the shock in our model. By including the ES

spread variable, we allow the model to capture the increased banking system financial

stress that arises immediately when monetary policy is tightened. We include M1 in the

model, which was definitely a component of the monetary policy reaction function in

the 1970’s, yet is often omitted in empirical models of monetary policy. And we include

the term spread, which allows the model to use the fact that a short rate rise induced by

policy contraction should be accompanied by a much smaller rise in long rates.19

19Contemporaneous work by Jordà, Singh and Taylor (2020), using very different methods and a cross-
country panel, also find very large and persistent effects of moentary policy which contrast to findings
from conventional models.
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The two spread shocks are the most important sources of variation in the GZ spread

and ES spreads. The two spreads do not tend to move together in response to these

shocks, and the two have different patterns of effects on other variables. Both depress

IP. Both depress P, though in the case of the ES shock this effect is statistically weak.

The shock we label GZ has a strong delayed effect in depressing BC, but modest and

indeterminate-signed effect on HHC, while the shock we label ES, which immediately

impacts ES, strongly depresses HHC with ill-determined effect on BC. The ES shock pro-

duces a quick and strong expansionary movement in R, while the GZ shock is followed by

a smoother, more delayed response of R. These patterns seem to fit an interpretation that

distinguishes a banking credit shock (ES) from a non-bank financial disturbance (GZ). All

the effects of these shocks on other variables are delayed, while their effects on the spread

variables are immediate. This fits an interpretation that they reflect disturbances originat-

ing in financial markets, with monetary policy trying to partially offset their effects.

The shocks we label HH and Firm Credit start with an impulse to household credit and

to business credit (net of inflation), respectively. They lead to persistent, but marginally

statistically significant, long-term declines in output. They qualitatively match the “ex-

cessive credit growth” story demonstrated empirically by Mian, Sufi and Verner (2017),

Schularick and Taylor (2012), and others, but might seem small in the light of that earlier

literature. We discuss the interpretation of these shocks and their comparison to earlier

literature in more detail in section IV.5.

The PCM shock accounts for both the main component of variation in PCM and a sub-

stantial component of the variation in P. Its immediate effect is to increase commodity

prices. The effect on commodity prices is persistent. With some delay, P (the PCE defla-

tor) moves up. BC, but not HHC moves up slightly. This looks like a commodity supply

shock.20

These core impulse response results seem largely robust to the alternative error specifi-

cations. We provide full impulse response plots for versions of the model with Gaussian

errors in appendix section 7.2.

20The Gaussian-errors version of the model shows a modest, marginally statistically significant, negative
IP response to this shock. See the appendix Figure 7.
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Shock Jan 1973 –
Sep 1979

Oct 1979 –
Dec 1982

Jan 1983 –
Dec 1989

Jan 1990 –
Dec 2007

Jan 2008 –
Dec 2010

Jan 2011 –
Jun 2015

IP 1.255 1.336 0.767 0.807 1.306 0.610
P 0.856 0.946 0.902 0.875 1.190 1.119

HH Credit 0.676 0.533 0.413 1.700 1.675 0.934
Firm Credit 0.814 0.950 1.179 1.165 1.241 0.622

M1 0.319 0.645 0.482 0.595 2.190 1.721
Monetary Pol. 1.031 4.147 0.585 0.109 0.087 0.004

PCM 1.275 0.832 0.760 0.722 1.729 0.575
TS 0.940 2.553 0.864 0.521 0.781 0.375

GZ (Stress 1) 0.764 0.484 0.533 0.717 2.823 0.632
ES (Stress 2) 1.565 1.917 0.543 0.286 1.707 0.009

TABLE 4. Posterior median relative variances for each of ten shocks in six
periods, from a model with t-distributed innovations.

The picture is also very similar if we estimate with data only up to December 2007.

Full impulse responses from this sample period are plotted in appendix section 7.3. In

particular, the identification of monetary policy and spread effects is very stable. There

is weak (within 68%, but not 90% bands) evidence of an output response to household

and business credit expansion shocks. These effects are of comparable magnitude to the

estimated credit effects in the model estimated on the full dataset.

IV.2. Structural shock volatility. Our results suggest that the variances of these shocks

change substantially among periods. Table 4 reports the variances of each of the ten struc-

tural shocks in the posterior mode t-errors model, over the full sample. 90% probability

bands for these relative variances are quite tight, mostly within 0.8 to 1.2 times the pos-

terior median estimate. In general, there is strong evidence of time-varying variance.

Several of the shocks spike in variance during the financial crisis (period 5). The sixth

shock, which we identify as a monetary policy shock, has a considerably inflated vari-

ance in the Volcker disinflation period and almost zero variance in the most recent period

(near the zero lower bound).

Table 5 lists the 4 largest posterior median shocks for each equation. These are in stan-

dard deviation units and not scaled by the corresponding λ values. They thus show the

biggest shocks, not the biggest “surprises” for the model.

The biggest of these, in the monetary policy shock, reflects a sudden easing of monetary

policy in May 1980, during the recession of that year. The Federal Funds rate fell from 18
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Month εit dyi,t Month εit dyi,t
IP Monetary Policy

9/2008 -9.875 -0.043 5/1980 -22.627 -0.067
12/1974 -6.259 -0.027 3/1980 10.409 0.031
1/1983 5.160 0.022 2/1981 -10.135 -0.030
4/1980 -5.015 -0.022 5/1981 9.312 0.028

P PCM

9/2005 5.492 0.007 8/1976 -4.222 -0.066
1/1990 3.820 0.005 7/1975 4.096 0.064

11/2005 -3.748 -0.005 7/1974 3.901 0.060
11/2008 -3.453 -0.005 2/1974 3.777 0.059

HHC TS

12/1999 7.068 0.015 8/1974 -7.157 -0.014
9/2008 5.922 0.012 6/1981 6.261 0.012

10/2003 -5.861 -0.012 11/2008 5.871 0.011
10/2002 4.933 0.010 4/1980 4.411 0.008

BC GZ

10/2008 5.247 0.019 10/2008 18.275 0.023
12/1986 5.216 0.019 1/2009 -7.844 -0.010
9/2007 4.454 0.016 9/2008 7.183 0.009

11/1999 4.283 0.016 7/2002 6.771 0.009
M1 ES

10/2001 -9.766 -0.047 10/2008 10.840 0.019
8/2011 8.507 0.041 7/1974 8.950 0.016
9/2001 8.431 0.041 9/2008 7.739 0.014
9/2008 6.773 0.033 12/1973 7.148 0.013

TABLE 5. Four largest residuals for each shock in the main model. Point
estimates are posterior medians.

per cent to 11 percent in that month, but soon started rising again. There were also large

values for this shock in March 1980, February 1981, and May 1981. These were all during

the period of Volcker unborrowed reserve targeting, which has a high value of λ for this

shock. That is, though large, these shocks occur in a period the model has identified as a

high-variance period.

The second and third largest shocks were in the two financial stress indicators, at the

time of the Lehman collapse in October 2008. The IP shock, which accounts for much of

the variance in output and looks like a “demand” shock, was sharply negative in Septem-

ber 2008, reflecting the large decline in industrial production as the crisis took hold. The

September 2001 attack on the US shows up in the M1 shock, which looks like an accom-

modated money demand shock. The shock is sharply negative in October 2001 as the Fed
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withdrew its temporary liquidity accommodation. It was nearly as large and positive in

the previous month. The PCM shock takes on large values in 1974-5, near the height of

the oil crisis.

The largest of these shocks all correspond to events that were recognizably unusual as

they occurred. But they tend to come from periods with large values of λit, so they are not

necessarily the biggest surprises. Looking at the largest surprises — the εit/
√

λit values

— is useful because it is these residuals that have the biggest impact on model fit. Also

the size and distribution across variables of these large surprises casts some doubt on our

assumption of i.i.d. t-distributed scaled shocks. We discuss the surprises in appendix

section 6.

IV.3. External identifying evidence. Table 5 in the appendix shows the correlation with

our estimated shocks of several variables that have been used by others as external in-

struments for monetary policy. In general, when the sample periods do overlap, the

high-frequency instruments agree with our identification. They show the instruments

highly correlated with our estimated monetary policy shocks, and not highly correlated

with our other estimated shocks. This suggests that if we followed the methodology of

Gertler and Karadi (2015) and Caldara and Herbst (2016) to identify a monetary policy

shock, we would get back something quite similar to what we have found with identifi-

cation through heteroskedasticity.

IV.4. Spread spikes and early warning. Three independent shocks can be identified by

sharp increases in spreads at t = 0, but only the ES and GZ shocks (the responses to

which are plotted in Figure 6) have significant output effects. The output effect is larger

and more significant for the bond spread (GZ) shock, associated with an initial surge in

the corporate bond spread and a long-term contraction in business credit. The ES shock,

in contrast, begins with a shock to the inter-bank lending rate of comparable magnitude

to the impulse following a monetary policy shock, a significant long-term contraction in

household credit, and a modestly significant short-term output contraction. It also shows

a quicker and stronger R decline following the shock, implying a stronger monetary loos-

ening, in response to the generated output decline. The fitting of two independent “stress
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shocks,” with quantitatively different macro effects, suggests the importance of a multi-

dimensional approach to measuring financial stress.

In the historical record, inter-bank shocks have almost as high a variance in the early

sample (1973 to 1982) as they do in the financial crisis (Table 4). With post-2009 interbank

rates very close to short rates at zero, this channel almost completely shuts down in the

final variance period. The corporate bond spread shock, in contrast, is by some margin

highest variance during the 2008 financial crisis.

Taken together, the impulse response and the estimated variances suggest that the

macro importance of spread shocks—closely related to the forecasting value of the spread

variables—is concentrated during certain high variance episodes and largest at short hori-

zons. Interest rates react to the corporate and inter-bank spread shocks by falling, as

would be expected from a monetary policy easing. Because the response of IP to mone-

tary policy is slower and more persistent than its response to these spread shocks, it is not

clear that monetary policy could do more to mitigate the output decline without creating

more instability.21

We will return to discussion of the contribution of financial variables to forecasting in

section VI, where we show results of pseudo-out-of-sample forecasting.

IV.5. Credit growth and recessions. Our main model offers some support, within 68%

error bands, of the hypothesis that excessive growth in household credit can forecast neg-

ative long-term real output growth (Figure 7). The shape of our estimated output re-

sponses to the two credit shocks HHC and BC are similar to those found in a small-system

(household credit to GDP, business credit to GDP, and real GDP) VAR by Mian, Sufi and

Verner (2017). In our model the response to the HHC shock, which raises HHC by about

1 per cent over five years, is a small increase in IP, on the order of 0.1 per cent, that lasts

less than a year, followed by a decline that reaches -0.1% after five years. Mian, Sufi and

Verner (2017) find, as a response to a shock that raises the ratio of household credit to GDP

by 1.6% over two years, an initial rise in GDP of about 0.2%, over two years, but also a

subsequent decline that reaches about -0.1% after five years. Because they ordered log

GDP first in their triangularly orthogonalized VAR, the innovation in their credit-to-gdp

21Of course this presumes the rest of the system remains stable as the monetary policy rule shifts. In
principle, we expect that eventually a systematic change in the policy rule would result in changes in the
rest of the system.
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ratio is in fact an innovation in credit itself, holding GDP constant. Because the ratio of

household credit to GDP in the US around 2014 was roughly .8, their 1.6% rise after two

years in that ratio corresponds to a rise of 2% over that span in household credit itself.

Thus their impulse response is to a larger shock than ours, and their initial expansion in

GDP is larger by the same factor. When their shock is rescaled to make the shock sizes

match, the effects on IP (in our case) or GDP (in their case) match quite closely.

Our estimates show a five-year negative response to the BC shock that is similar in

size and statistical significance to the estimated response to HHC, though without the

initial positive response. This also is consistent with the Mian, Sufi and Verner (2017)

business credit estimated responses. All these results have fairly wide error bands, so

there is no statistically sharp difference between the models. This might not have been

expected, since these other authors use an international panel of annual data and a smaller

model with no structural identification, while we use monthly US data, a big model, and

separate out a structural shock.

However, our model implies that the decline in output growth following this shock can

be entirely accounted for by the rise in interest rates it elicits. The response of the system

to the credit shocks, combined with a sequence of monetary policy shock values that keep

the interest rate constant, eliminates the decline in output (Figure 5). Of course this does

not imply that the monetary contraction following a credit aggregate shock is a mistake.

The credit shocks are followed by an increase in inflation; without the monetary policy

reaction, the inflation would be larger and more persistent.

Though the credit shocks are followed by future declines in output growth, they are

not followed by substantial movements in the spread variables GZ and ES. The spread

shocks, on the other hand, are followed by substantial declines in credit aggregates. Our

interpretation is that the credit expansions generated by the credit shocks are followed

with a delay by slow growth due to monetary tightening, not financial market distress.

A different way to assess the economic significance of credit shocks in our model is

to calculate the share of forecast error variances that are explained by each shock (Fig-

ure 8).22 The importance of what we label as the HHC and BC shocks for explaining

22These are the squared impulse responses scaled to sum to one for each response variable in each period.
Precisely, the variance decomposition of variable i is, for each j and each time horizon s, the proportion of
s-step ahead forecast error variance in variabale i attributable to shock j.
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credit variation starts very high (as they have by far the largest contemporaneous impact

on credit) but decays over time. Over five years, these shocks explain 20% and 24% re-

spectively of forecast error variance in household and business credit. The remainder of

credit variation over these horizons is explained by the other shocks in the model, which

are all associated with credit and output moving in the same direction, or with output

scarcely moving at all. Over five years, the same “bad credit shocks” explain 1.4% and

1.6%, respectively, of forecast error variance in industrial production.

In the period 1990-2007, when the variance of the credit shocks is relatively high and

the variance of others relatively low, the two credit shocks explain a higher fraction of

five-year-ahead variance in the two aggregates (49.5% for household credit and shock 3,

and 37.6% for business credit and shock 4) and a higher, though still small, percentage of

output variation at the same horizon (4.1% and 3.2% respectively).

V. CREDIT AGGREGATES IN SMALLER MODELS

There is a recent literature that claims to show that credit expansion predicts nega-

tive growth and/or financial crises. Our model does not suggest that credit expansion

predicts financial crises and shows the negative association of credit growth with future

output growth as a small component of the overall relation between credit and output.

But our model does not contradict the earlier results with smaller models. It is compat-

ible with them precisely because it endogenizes important omitted variables including

interest rates.

As we have already observed, the responses to shocks the HHC and BC shocks in our

model lie within error bands of the responses to credit-to-GDP-ratio shocks in Mian,

Sufi and Verner (2017) (MSV). Those authors also estimate single-equation regressions

of growth in real output over the next three years on growth in credit in the past three

years, finding that a one-standard-deviation increase in 3-year household credit growth

predicts a 2.1% lower growth rate of output in the subsequent three years. they find no

such effect with business credit. When we replicate those regressions using our data, we

find that a one standard deviation increase in the three-year growth rate of BC predicts a

1.7 percentage point decline in the subsequent three year growth rate of output. We find

no such predicted effect from increased household credit growth. When we substitute the
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Proportion of negative effects

Household Credit Business Credit

without lagged IP 0.55 0.56
with lagged IP 0.53 0.57

Proportion of economically significant negative effects

Household Credit Business Credit

without lagged IP 0.29 0.31
with lagged IP 0.30 0.33

TABLE 6. Probability, in simulated draws of coefficients and data from the
posterior distribution under the t-distributed errors model, of a negative or
“economically significant” effect of previous 3-year credit growth on subse-
quent three-year output growth. An economically significant effect is one
that makes a one-standard-deviation change in credit growth produce a 2
percentage point or larger change in output growth rate.

flow of funds data on business credit and household credit that MSV used for our HHC

and BC, the effects of HHC and BC increases by one standard deviation are both negative,

with HHC producing a 1.6 percentage point decline and business credit a 0.6 percentage

point decline. The main difference between our results and theirs in this single-equation

exercise seems therefore to be in the differing definitions of the credit variables.

Though the two types of data give different answers as to which type of credit growth

predicts low future output growth, they agree that there is at least one type of credit

growth that predicts lower future output growth. Note, though, that the VAR results —

both MSV’s 3-variable VAR with quarterly data and our full 10–variable model — imply

that household credit growth shocks predict a rise in output, followed by a return over

five years to trend line or slightly below. In other words, they predict growth rates lower

three years in the future, but higher in the immediate future, leaving it unclear whether

there is any net, persistent negative effect on the level of output.

The contrast between our data, in which business credit but not household credit pre-

dicts future output, and the MSV data, in which the reverse is true, is not statistically

sharp, according to our model. We replicate the single-equation growth rate regressions

on data simulated from our model, and we find that with substantial probability our re-

sults from simulated data are of similar size and sign to those found in the actual data,
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and that the model is about as likely to generate predictive value for HHC as for BC.23

The results are in Table 6.

To form the table we used three-year forward differences of the log of real output (IP) as

the dependent variable, three-year backward differences in real credit (credit over price

level) over output as the main independent variable, and lags of first differences of log

output as an extra independent variable. In equation form, with yt denoting log IP, hct

the ratio of household credit deflated by PCEPI to IP, and bct the ratio of business credit

deflated by PCEPI to IP,

yt+3 − yt = α + βh(hct − hct−3) + βb(bct − bct−3) +
k

∑
i=1

γi(yt−i+1 − yt−i) .

Table 6 reports probabilities for βh and βb. The results “with lagged IP” set k = 3; other-

wise we set all γi ≡ 0.

In these simulated draws from our model’s data distribution we find the probability of

credit growth coefficients smaller than 0 to be over .5 and negative enough that a one stan-

dard deviation increase in credit growth reduces output growth by 2 percentage points or

more with probability about .3. Note that in the simulated data, it is about equally likely

that the BC or the HHC predictive effect will be large and negative.

VI. CREDIT CONDITIONS AND FORECASTING

So far we have demonstrated that credit variables have an interesting interpretation

within the model. But are they practically helpful to include, and could this have been

realized before the 2008 financial crisis? We find that information in spreads can be use-

ful for short-term forecasting at the onset of a crisis. The model with spreads does not,

however, provide much advanced warning of a crisis or any clear advantage in “normal”

times outside of recessions.

VI.1. Forecasting in the recent financial crisis. We first focus on the 2007-08 financial

crisis and its immediate aftermath. At each month between January 2007 and December

23The simulated data takes into account uncertainty from the model parameters and the identity of the
model innovations. We sample from our saved posterior draws for the coefficients, and for each draw,
we simulate monthly frequency data starting from the observed initial conditions and using structural
innovations from the appropriate t distribution. We next transform the data to the annual frequency. And
we finally apply the log or ratio transformations needed to match the earlier estimates, as described below.
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2010, we estimate (posterior modes of) models with and without credit variables using

data only up to that point and then calculate 12-month forecasts. This “pseudo-out-of-

sample forecasting” exercise offers a dimension in which to compare models with dif-

ferent data lists and gives a sense of how much changing the emphasized data in macro

models would have helped in real time.We focus on the Gaussian errors specification, de-

spite its fitting more poorly than the t model, because it seems to capture the main model

dynamics and is much easier to do recursive computations with.

Figures 9, 10, and 11 plot posterior mode forecasts from our (Gaussian error) model

with 10 variables, a version without the credit aggregates, and a version without the

spreads, respectively, at 3-month intervals from January 2007 to October 2010. The model

without spreads (Figure 11) never fully “accepts” the crisis, predicting a return to near

pre-crisis growth rates at each point during the deepest contraction. The models with

spreads (with or without credit aggregates) give slightly less optimistic forecasts in early

2008, at which point the bond and inter-bank spreads have elevated slightly over mid-

2000s levels. But the most obvious improvement is the models’ ability to grasp the sever-

ity of the crisis during the deepest fall from mid 2008 to mid 2009. This observation is

consistent with the previous section’s analysis of impulse responses, which suggested

that the model could identify spread shocks which have macro effects within the first few

months. The spreads provide little advance warning of severe recession but do enhance

recognition of the severe recession, and its likely persistence, once it is underway.

The addition of credit aggregates seems considerably less important. With spread vari-

ables alone, with them and also credit aggregates, the model is quicker to recognize a

persistent downturn. While forecasts of IP are little affected by excluding credit aggre-

gates, the model without them consistently predicts that interest rates will start reverting

to positive values from the zero lower bound, though this seems to have limited effects

on forecasted output or consumer prices.

VI.2. Forecasting power in the entire sample. We generalize the exercise of the previous

section by calculating forecasts with versions of the main model, the no spreads model,

and the no credit model estimated up to each month from October 1979 to June 2015.24

24The truncation at the beginning of the sample comes from the requirement of having two variance regimes
to identify the parameters. Unfortunately, this cuts out some interesting macreconomic turbulence in the
1970s.
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We focus on root mean squared error (RMSE) for forecasts of all variables common to the

models.

Figures 12 and 13 display the evolution of these RMSE for the base model with all

variables (blue), a model without spreads (red), and a model without credit aggregates

(green). As suspected from the previous section, the models with spreads does a signif-

icantly better job predicting output just before and during the 2007-2009 financial crisis

and recession. The model’s internal projections for the Federal Funds rate are quite a bit

better at the zero lower bound, though this comes at the cost of one set of very poor fore-

casts right around the major rate reduction in late 2008. Any advantages in forecasting

the price level and credit aggregates in the crisis are less obvious.

Outside the recent financial crisis, and potentially the early 1980s and early 2000s reces-

sions, the no spread model seems to perform just as well if not better.25 We might suspect

that a formal or informal comparison of models before 2008 would not clearly support

the inclusion of the financial variables, even if the estimated dynamics from such a model

look like they have “economically interesting” transmissions from spreads to macro vari-

ables. It could also be that the small fluctuations in spreads in “normal times” are not

useful for forecasting; only the large movements around recessions or crises matter.26

The model without credit aggregates, but with credit spreads, seems to match the full

model quite closely throughout the sample. One exception seems to be the early part

of the 1981-1982 recession and the subsequent uptick in growth around 1984. In several

periods, including post-recession growth in the early 90s and 2010s, the no credit model

is significantly better at predicting output. In general there is no clear pattern of the model

with credit aggregates, after including spreads, doing a better job of forecasting the timing

or severity of U.S. recessions.

Additionally, for the period October 1979 to December 1982, we use models with six lags because of the
smaller availability of data.
25Del Negro and Schorfheide (2013) find a similar result, using a DSGE model with or without financial
variables. And Stock and Watson (1989) much earlier found a spread variable to aid forecasting around a
recession period, but not at other times.
26These nuances could be captured formally by taking posterior forecasts averaged across an “ensemble” of
models, the weights on which change over time (for instance, with some approximation of posterior odds).
To capture them within the model might require some more complex (and possibly endogenous) modeling
of regime switching.
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VII. ROBUSTNESS

We have tried a number of variants on our model to check robustness of our results.

These are described in detail in sections of the appendix. Our checks include varying

the assumption on error distributions (Appendix 7.2), estimating models with triangular

Cholesky identification (Appendix 7.4), looking for nonlinearity via various nonlinear

transformations of the data (Appendix 7.6), and estimating quarterly models (Appendix

9). Of course the model we present as our main model is itself the result of experiments

like this, where we have adopted specifications when we found them fitting better. As a

result, the robustness checks in the appendix do not cast doubt on our main specification.

VIII. CONCLUSION

Credit conditions, monetary policy, and real activity interact dynamically through mul-

tiple channels. To study these interactions, we construct and estimate structural multiple-

equation models that are identified without strong a priori assumptions. Our analysis

distinguishes impulses and feedbacks that focused study of individual channels might

miss.

Our main model includes ten independent shocks that are identified by substantially

changing volatilities across exogenously specified regimes. The data strongly favor addi-

tional corrections for fat tails in the distributions of the structural innovations, though the

main qualitative conclusions are the same without them. Further refining (and possibly

endogenizing) a model specification for volatility remains a task for future research, but

addressing the issue in some way greatly improves model fit and affects implied dynam-

ics.

Monetary policy is identified without any timing restrictions and seems to be ampli-

fied through inter-bank credit spreads. Two other model shocks look like “stress shocks”

which originate in the financial sector and propagate to the real economy after several

months of delay. The distinction between these shocks, which start with impulses to cor-

porate bond spreads and interbank rate spreads respectively, is potentially very impor-

tant for emerging research on the role of lending frictions and risk premia in the macroe-

conomy. A related takeaway for forecasters is that one-dimensional metrics of financial

conditions may be insufficient for capturing risks for the real economy.
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While these credit spread shocks do have strong real effects, they do not provide more

than a few months of “advance warning” of an output contraction. In recursive-out-

of-sample forecasts around the 2008 financial crisis, including additional credit spread

variables only improves forecasts in a narrow window at the beginning of the downturn.

Across the entire data sample, there is no clear evidence that including credit variables

improves forecasting performance.

Credit aggregates in this model mainly move “passively” in the same direction as out-

put. Two shocks generate opposite movements in household (real estate plus consumer)

or business credit and output, but in all periods the magnitude of these effects is rela-

tively small. They are accompanied by rising interest rates, and if monetary policy offsets

that rise, the effect of the credit shocks on output would disappear. To the extent that this

effect is quantitatively important, a multivariate model is necessary to properly separate

it from other effects.

The weakness in our model of the predictive value of credit aggregates for output

growth contrasts with some results in the literature. While we argue that some of the

apparent contrast stems from our use of a richer variable list and more careful identifica-

tion, some of the contrast could arise from our use of data from a single country rather

than several, or from our use of data over a shorter time span.
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Jordà, Òscar, Moritz Schularick, and Alan M. Taylor. 2015. “Betting the house.” Journal

of International Economics, 96, Supplement 1: S2 – S18. 37th Annual NBER International

Seminar on Macroeconomics.
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FIGURE 1. (1/4) Impulse responses to the ten orthogonal structural shocks
in the model with t distributed errors over 60 months, with 68% (dark blue)
and 90% (light blue) posterior uncertainty regions. Scaled to an “average”
period with unit scale.
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FIGURE 2. (2/4) Impulse responses to the ten orthogonal structural shocks
in the model with t distributed errors over 60 months, with 68% (dark blue)
and 90% (light blue) posterior uncertainty regions. Scaled to an “average”
period with unit scale.
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FIGURE 3. (3/4) Impulse responses to the ten orthogonal structural shocks
in the model with t distributed errors over 60 months, with 68% (dark blue)
and 90% (light blue) posterior uncertainty regions. Scaled to an “average”
period with unit scale.
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FIGURE 4. (4/4) Impulse responses to the ten orthogonal structural shocks
in the model with t distributed errors over 60 months, with 68% (dark blue)
and 90% (light blue) posterior uncertainty regions. Scaled to an “average”
period with unit scale.
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FIGURE 6. Impulse responses to the bond spread (GZ) and inter-bank
spread (ES) shocks, with 68% (dark blue) and 90% (light blue) posterior
uncertainty regions. Scaled to an “average” period with unit scale.
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FIGURE 9. Posterior mode forecasts, from a model with all ten variables,
estimated up to points in and around the Great Recession.
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FIGURE 10. Posterior mode forecasts, from a model without the two credit
aggregates, estimated up to points in and around the Great Recession.
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FIGURE 11. Posterior mode forecasts, from a model without the three credit
spreads, estimated up to points in and around the Great Recession.
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FIGURE 12. Root mean squared error (RMSE) for 6-month forecasts from
rolling estimations of the Gaussian errors model with all variables (blue),
no credit spreads (red), and no credit aggregates (green). NBER recessions
are shaded.
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FIGURE 13. Root mean squared error (RMSE) for 24-month forecasts from
rolling estimations of the main model with all variables (blue), no credit
spreads (red), and no credit aggregates (green). NBER recessions are
shaded.
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