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Abstract
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condition embedded in Sims’s (2003) mutual information specification, a version of the First Welfare

Theorem holds no matter the degree of inattention. More generally, however, a cognitive externality may

emerge and welfare may be improved by regulating markets and simplifying prices. We discuss how these

results qualify Hayek’s (1945) argument about the informational optimality of the price system, how they
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1 Introduction

People are inattentive, forgetful, and cognitively constrained. In such circumstances, it is natural to question

the functioning of the invisible hand. For instance, Sims (2010, p.170) worries that prices “cannot play their

usual market-clearing role” when consumers and firms are inattentive, Gabaix (2019, p.309) argues that the

welfare theorems fail in the presence of inattention, and Farhi and Gabaix (2020) identify taxes that correct

the effects of (their form of) inattention on consumption and production. But if inattention is rational, i.e.,

the product of optimal choice given cognitive costs, what needs to be corrected?

A related question concerns Hayek’s (1945) idea about the “economy of knowledge” afforded by markets:

We must look at the price system as a mechanism for communicating information if we want to

understand its real function. [...] The most significant fact about this system is the economy of

knowledge with which it operates, or how little the individual participants need to know in order

to be able to take the right action.

The formalization of this notion by Grossman (1981) presumes not only complete markets but also perfect,

costless, observation of all prices. We instead ask: if attention to both fundamentals and prices is costly, what

exactly is the “economy of knowledge” achieved by markets? And if people make mistakes when reacting to

price changes, do markets still provide the best means of communication and coordination?

We study these questions by augmenting the Arrow-Debreu framework with a general form of rational

inattention. We show that a version of the First Welfare Theorem holds if attention costs satisfy an invariance

condition embedded in Sims’s (2003) mutual information specification. In this sense, inattention per se

does not disturb the invisible hand. But there is a catch. Under this invariance condition, the “economy

of knowledge” is weak: there is no welfare loss from having agents directly learn about the underlying state

of nature instead of the relevant prices. When instead the price system can strictly economize attention

costs, invariance fails and efficiency is no longer guaranteed. Instead, it may be possible to ease everybody’s

attention problem and improve welfare by regulating and “simplifying” markets.

Framework. An inattentive economy is defined by the familiar primitives (commodities, preferences, pro-

duction possibilities, and states of nature), plus a specification of feasible signals and associated costs. These

can be interpreted as the cognitive or other non-pecuniary costs of more attention (Sims, 2003), better per-

ception (Woodford, 2020), or more precise optimization (Flynn and Sastry, 2023). Crucially, agents can flexi-

bly learn about both prices and fundamentals. This allows us to cast Hayek’s “economy of knowledge” under

the umbrella of rational inattention. Finally, markets are complete, embedding insurance not only against

idiosyncratic taste and endowment shocks but also against idiosyncratic noise arising from inattention. This

disentangles inattention from uninsurable risk and lets us zero in on the questions of interest.

Efficiency in Inattentive Economies. Our efficiency concept is a natural adaptation of Pareto optimality to

the above setting. It maps to a fictitious social planner that may regulate peoples’ consumption and attention

choices and may even replace prices with other flexibly designed messages. This planner fully internalizes
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agents’ cognitive limitations and attention costs in the same way that she internalizes their preferences over

commodities. This non-paternalistic stance explains why we, unlike Gabaix (2019) and Farhi and Gabaix

(2020), do not a priori equate inattention with inefficiency.1

Our first main result, Theorem 1, establishes that the First Welfare Theorem extends to our setting pro-

vided that attention costs satisfy an appropriate invariance condition (Definition 6). This condition gener-

alizes the familiar scale-free property of mutual information costs (Sims, 2003). Its positive content is the

subject of Caplin et al. (2022) and a growing decision-theoretic literature. Theorem 1 reveals its normative

content and uses it to demonstrate that market outcomes can remain efficient no matter how distorted they

may appear when compared to their full-attention counterparts.

We prove Theorem 1 in two steps. We first show that there is no way to improve upon market outcomes

if the planner’s message must coincide with equilibrium prices. To do this, we map the inattentive econ-

omy with fixed messages to a “twin” economy that can be readily nested in the standard Arrow-Debreu

framework. Under this translation, attention choices and attention costs are subsumed behind appropri-

ately modified preferences and technologies. The efficiency of the original inattentive economy follows from

showing, via standard arguments, that the twin economy is efficient.

We next relax the aforementioned restriction on messages. This step therefore allows us to check if prices

are the best means of communication and coordination. The answer is yes under invariance, because this

condition guarantees that agents’ cognition is unaffected by any alternative repackaging of the state of na-

ture. Put differently, agents with invariant costs not only choose to perceive prices in an optimally coarse or

noisy format, but also cannot benefit from manipulation or simplification of the price system.

Inefficiency from Cognitive Externalities. In general, the cost of tracking and optimally responding to

prices or other endogenous objects may depend on their stochastic properties (e.g., their volatility, coarse-

ness, or “complexity”), which in turn depend on the behavior of others. We refer to such a dependence of

one’s attention costs on others’ behavior as a cognitive externality.

Invariance yields efficiency by muting cognitive externalities and, symmetrically, non-invariance makes

inefficiency possible by introducing cognitive externalities. However, non-invariance does not guarantee

inefficiency: cognitive externalities may happen to be minimized in equilibrium or to cancel out across

agents. A similar qualification applies to conventional externalities in preferences and technologies. For

example, when someone plays music in their backyard, the negative externalities on some neighbors could

cancel out with the positive externalities on others. In this spirit, Theorem 2 establishes the following partial

converse to Theorem 1: a sufficient condition for inefficiency is that attention costs are non-invariant in an

appropriately strong sense, which amounts to assuming that the same transformation (“simplification”) of

prices or other messages can reduce attention costs for all agents.2 Notwithstanding this qualification, the

combination of Theorems 1 and 2 reveals a tight connection between invariance and efficiency.

1Gabaix (2019) compares market outcomes in the presence of inattention to first-best outcomes in the absence of inattention.
Farhi and Gabaix (2020) proceed to identify taxes that help align the former with the latter.

2To be precise, this condition is sufficient for the inefficiency of any equilibrium in which prices vary across some states and
agents collect some information.
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Examples. Section 2 anticipates the main ideas with four examples, which differ only in the specification of

attention costs. In the first, attention costs are given by mutual information, guaranteeing efficiency. In the

second, attention costs embed the property that numerically similar prices are harder to distinguish from

one another, in the spirit of Hébert and Woodford (2021). In this case, equilibrium attention is inefficiently

high: by having agents pay less attention, the planner can make sure that price fluctuations are larger and

therefore more easily discernible. The opposite is true in our third example, in which attention costs embed

a preference for less uncertainty or more coarseness and, as a consequence, equilibrium attention is too

low. In this case, the cognitive externality could justify policy interventions aimed at reducing volatility in

markets or even shutting down some markets. Finally, in the fourth example, non-invariance opens the door

to sunspot volatility and multiple Pareto-ranked equilibria (“cognitive traps”).

Hayek Meets Sims. Together, our results offer the following perspective on Hayek (1945). When invariance

holds, efficiency obtains but there is a catch: the “economy of knowledge” afforded by markets is weak, in

the sense that there is no welfare loss from replacing prices with empty messages and forcing people to learn

about the underlying state of nature. When instead invariance fails, markets have the potential to strictly

economize attention costs, but a benevolent social planner may do even better by appropriately simplifying

the price system or by introducing other messages in addition to, or in place of, market prices. Hayek’s (1945)

argument is thus turned on its head: allowing markets to achieve a strict economy of knowledge opens the

door to inefficiency, even when markets are complete and competitive.3

Our analysis also links the normative question of interest to recent advances in decision theory and

experimental economics. As already mentioned, invariance is tightly connected to Sims’s (2003) mutual in-

formation specification. Mutual information satisfies invariance by construction, because its foundation

in Information Theory and optimal coding ignores the “units” of the state space. Furthermore, within the

class of uniformly posterior separable cost functionals, invariance is uniquely satisfied by mutual informa-

tion (Caplin et al., 2022). In this sense, invariance and mutual information are “one and the same.” But

despite its popularity in macroeconomics (Sims, 2010; Maćkowiak et al., 2023), this specification is at odds

with various phenomena in the laboratory (Dean and Neligh, 2022; Woodford, 2012, 2020) as well as in the

field (Chetty et al., 2009). This suggests that the source of inefficiency identified here is relevant in practice.

Additional Points and Larger Context. It is worth emphasizing three elements of our analysis, the combi-

nation of which is instrumental to interpreting our main findings.

First, we let attention costs take a flexible functional form. For example, we can consider the full class of

posterior separable costs (Caplin and Dean, 2015; Denti, 2022), of which mutual information is one example,

as well as non posterior separable costs (e.g., Denti et al., 2022). In more substantive terms, our formulation

can embed a preference for coarseness or sparsity, for more discernible contingencies as in Hébert and

Woodford (2021), and for other notions of what is easier for agents to learn or understand. Our analysis

shows that only the subset of these models satisfying invariance shuts down cognitive externalities.

3As in the standard Welfare Theorems, our fictitious planner’s problem is not meant to be a representation of real-world central
planning. Thus, our results do not speak to Hayek’s (1945) broader, and more practical, justification of the market mechanism.
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Second, we employ an expanded notion of complete markets: consumers are insured against both the

usual suspects (e.g., idiosyncratic taste and endowment shocks) and the noise in their attention. While un-

realistic, this assumption serves three valuable roles: it guarantees that consumers can meet their budget

constraints despite their inattention; it facilitates the aforementioned translation of inattentive economies

to “twin” attentive economies with modified preferences and technologies; and it shuts down the familiar

inefficiency that can emerge from pecuniary externalities once markets are incomplete (Geanakoplos and

Polemarchakis, 1986). Together, these properties keep the analysis as close as possible to Arrow-Debreu and

allow us to prove not only the results mentioned above, but also additional results regarding equilibrium

existence, the Second Welfare Theorem, and sunspot volatility.

Finally, we discuss how our methodology and insights extend to other behavioral phenomena, like nar-

row bracketing, bounded recall, general stochastic choice, and sparsity, provided that these phenomena are

rationalized as the consequence of costly cognition and that these costs are included in welfare calculations.

All in all, our analysis helps delineate three different perspectives on when and how cognitive frictions

can justify government intervention. The one favored by some behavioral literature (e.g., Gabaix, 2014, 2017;

Farhi and Gabaix, 2020) takes a paternalistic stance: it requires one not only to move outside the rational-

inattention framework but also to neglect attention costs in welfare calculations. The alternative developed

here treats inattention as the product of rational choice and lets the planner internalize attention costs. This

negates the lessons of the aforementioned literature by design, but in so doing also helps draw attention to

the kind of cognitive externalities we have identified in this paper. A third approach, left for future work,

could retain our non-paternalistic stance but relax our complete-markets assumption to shift the focus to

the idea that rational inattention introduces uninsurable idiosyncratic risk.

Related Literature. The literature on rational inattention spurred by Sims (1998, 2003) is voluminous and

has delivered valuable insights in a wide range of applications. Despite these advances, our paper is the first

to show how to add rational inattention to the general Arrow-Debreu framework and to revisit the Funda-

mental Welfare Theorems in the presence of inattention. In so doing, we identify a novel form of inefficiency,

offer a new angle to Hayek’s “economy of knowledge,” and connect the normative questions of interest to a

modern literature axiomatizing and experimentally testing models of inattention (e.g., Caplin and Dean,

2015; Caplin et al., 2022; Dean and Neligh, 2022; Hébert and Woodford, 2021; Pomatto et al., 2023).

Modeling consumers’ attention to prices in a market environment is akin to modeling players’ attention

to the actions of others in a game. This link is explored in a recent, complementary paper by Hébert and

La’O (2023). These authors establish efficiency of equilibria in their class of games under two conditions:

a restriction on payoffs that echoes Angeletos and Pavan (2007) and serves a similar role as our complete-

markets assumption (namely, guaranteeing efficiency under exogenous information); and a close cousin

of our invariance condition. This shows how our paper’s insight regarding the tight connection between

invariance and efficiency extends outside the Arrow-Debreu context.4

4Hébert and La’O (2023) also establish a number of other substantive results, including two on equilibrium existence and non-
fundamental volatility which, unlike Proposition 6 of our paper, extend to inefficient equilibria.
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Angeletos and La’O (2020), Colombo, Femminis, and Pavan (2014), Gul, Pesendorfer, and Strzalecki

(2017), and Tirole (2015) study efficiency in settings that trivially satisfy our invariance condition, because

attention costs depend on only the joint distribution of an agent’s signal and an exogenous state. Thus, the

conditions for (in)efficiency in these works relate exclusively to pecuniary or payoff externalities, as opposed

to the cognitive externalities identified here. A similar point applies to Ravid (2020), who studies a bargain-

ing game in which a buyer can flexibly pay attention to a good’s quality and a seller’s take-it-or-leave-it offer.

By including inattention to the terms of trade, that paper shares our theme of studying how inattentive mar-

kets work. However, by assuming mutual information costs, that paper rules out cognitive externalities by

our definition. Instead, it produces inefficiency from the interaction of inattention with market power.

Our notion of cognitive externalities recalls and indeed nests the “information externalities” in the lit-

erature on Noisy Rational Expectations Equilibria (e.g., Grossman and Stiglitz, 1980; Laffont, 1985; Vives,

2017). This literature assumes that agents can learn freely about certain fundamentals (e.g., an asset’s div-

idend) from perfectly observed prices. This amounts to an extreme violation of our invariance condition.

Notwithstanding this connection, the substance is quite different. While that literature is focused on the

aggregation of dispersed private information about fundamentals, we are concerned with inefficiencies that

obtain when agents are inattentive to or confused about prices themselves. In such settings, the cognitive

externality concerns exclusively the question of whether allocations could be improved by making prices

easier to learn or understand. Furthermore, completing the markets (“having as many market signals as

underlying fundamentals”) does not remove the friction in our setting and could even reduce welfare, while

the opposite is true in that literature. Mondria et al. (2022) bridges the two perspectives by studying an asset

market in which traders incur a cost for extracting information about fundamentals from prices.

Finally, a prior literature studies Hayek’s hypothesis by showing that market mechanisms can be imple-

mented with the lowest-dimensional message space among the class of Pareto efficient mechanisms (Hur-

wicz, 1972; Mount and Reiter, 1974; Jordan, 1982). Our approach, by contrast, focuses on what messages

maximize welfare inclusive of cognitive costs.

Outline. Section 2 illustrates the main ideas with an example. Section 3 sets up our general framework.

Section 4 presents our main result regarding efficiency. Section 5 uses our results to discuss the link between

the price system’s “economy of knowledge” and the mutual information framework. Section 6 provides ad-

ditional results. Section 7 discusses possible extensions and open questions. And Section 8 concludes.

2 The Main Ideas in a Linear-Quadratic-Gaussian Economy

In this section, we study a simple, two-good, exchange economy, corresponding to the linear-quadratic-

Gaussian framework used in Sims (2003) and other works. We show that efficiency is guaranteed when costs

are proportional to the mutual information of signals with all variables determined exogenously to the con-

sumers (i.e., fundamentals and prices). We then construct three different cost specifications under which

efficiency fails and provide economic intuition for the cognitive externalities that explain these results.
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2.1 Set-up

There is a continuum of agents, indexed by i ∈ [0,1], and two goods, called “coconuts” and “money.” Con-

sumer i enjoys utility xi − 1
2 x2

i + yi from coconut consumption xi ∈R and money consumption yi ∈R. Each

consumer’s coconut endowment is equal to an aggregate exogenous shock, ξ ∼ N (0,1). Each consumer’s

endowment of money is zero and the price of coconuts in terms of money is p ∈ R. The consumer’s budget

is therefore pxi + yi ≤ pξ, for all realizations of these variables.

Agents make decisions under uncertainty about their endowment and the coconut price, which we de-

fine together as the cognition state z := (ξ, p). We assume that coconut consumption xi is measurable in a

signal ωi of the cognition state, while money consumption adjusts to meet the budget.

Agents can observe signals of the form ωi = a1ξ+a2p +a3ηi , where (a1, a2, a3) ∈R3 are choice variables

and ηi ∼ N (0,1) is idiosyncratic noise. We write φ(· | z; a1, a2, a3) as the conditional density of ωi . We let π

denote the density function for the cognition state, which is also the agents’ prior. Obtaining signals has a

utility cost represented by a function C :R3 ×P →R, where P ⊆∆(R2) is a space of possible priors.

Solving out for yi in the budget constraint and suppressing the i index, we can write the consumer’s

problem as the following choice of a consumption rule x :R→R and a signal structure (a1, a2, a3) ∈R3:

max
x,a1,a2,a3

∫ ∫ (
x(ω)− x(ω)2

2
+p(ξ−x(ω))

)
φ(ω|z; a1, a2, a3)π(z) dωdz −C (a1, a2, a3,π) (1)

Because of the quadratic preferences, each agent’s optimal demand for coconuts conditional on receiving

state ω is affine in their expectation of the price: xi (ω) = 1−E[p |ωi ].

Apart from adding tractability, the quasilinear specification has two substantial implications. The first

is that the optimal consumption of coconuts is insensitive to wealth, which in turn means that consumers

do not care to know the endowment ξ per se; they only care to know the price p.5 Thus, the key issue in our

context is not how much agents know about a fundamental (e.g., as studied by Grossman and Stiglitz, 1980)

but rather how attentive they are to prices. The second implication is that the marginal utility of wealth

is equated across realizations of the idiosyncratic noise in ω. This is preserved in our general framework,

thanks to a strong notion of complete markets. Our general framework will nevertheless allow for inequality

due to fixed heterogeneity in utility functions and attention costs (cognitive capacities).

2.2 Equilibrium and Efficiency

We assume that a law of large numbers applies across realizations of signal noise in the cross-section of

agents and that agents pick symmetric strategies. We can therefore write market clearing as X (ξ, p) = ξ for

each realization ξ, where X (ξ, p) ≡ ∫
x(ω)φ(ω | ξ, p) dω . We let P :R→R denote a price functional.

We define a competitive equilibrium as a tuple (x, a1, a2, a3,P,π) such that consumers optimize, the mar-

ket for coconuts clears, and the consumer’s prior about z is consistent with the equilibrium price func-

5We could have also introduced an attentive supplier, who owned the coconuts but valued only money. Then, ξ would be the
random supply of coconuts and would have no intrinsic value for the inattentive consumer

6



tion. Since each ξ will be associated with only one price in equilibrium, the last requirement means that

π(ξ, p) =πΞ(ξ) ·δP (ξ)(p) for all (ξ, p), where πΞ is the density of ξ and δP (ξ) is the Dirac delta function around

p = P (ξ). Note that the agents’ prior about z, which enters attention costs, is generated by combining the

exogenous prior about ξ with the equilibrium price function. This is where Rational Inattention (RI) meets

Rational Expectations Equilibrium (REE).

It may be useful to recast this definition in the familiar metaphor of a Walrasian auctioneer, to under-

stand how, paraphrasing Sims (2010), prices can “play their usual market-clearing role” despite inattention

to prices. Before ξ and p are realized, consumers use their knowledge of the price functional P to construct

their prior over z = (ξ, p) and to design an optimal signal. Then, nature chooses ξ and the auctioneer sets

p = P (ξ). Agents observe their noisy signals of p (and of ξ) and submit demands based on these signals. This

yields an aggregate demand for coconuts that is a deterministic function of p given ξ, since idiosyncratic

noise in the agents’ signals washes out. The loop closes by requiring that the entire function P is such that

this demand meets supply for on any possible realization of ξ.

We now describe our notion of feasibility and efficiency via a social planner’s problem. The planner

that cannot eliminate the cognitive friction, but can otherwise regulate consumers’ behavior. Moreover, the

planner can observe the state and send a “message” m, conditional on the state, that substitutes for prices in

agents’ cognition.6 For the example, we assume that the message is affine in the fundamental: m =µ0+µ1ξ.

As before, consumers form signals of the form ωi = a1ξ+a2m +a3ηi .

We say that a tuple (x∗, a∗
1 , a∗

2 , a∗
3 ,µ∗

0 ,µ∗
1 ,π∗) is efficient if it solves the following program of maximizing

payoffs subject to the resource constraint and consistency of the prior:

max
x,a1,a2,a3,µ0,µ1,π

∫ ∫ (
x(ω)− x(ω)2

2

)
φ(ω|z; a1, a2, a3)π(z) dωdz −C (a1, a2, a3,π)

s.t.
∫

x(ω)φ(ω | ξ,m; a1, a2, a3) dω= ξ for all (ξ,m)

π(ξ,m) =πΞ(ξ) ·δµ0+µ1ξ(m) for all (ξ,m)

(2)

where δµ0+µ1ξ is the Dirac delta function indicating that the message is m = µ0 +µ1ξ. We say that an equi-

librium (x, a1, a2, a3,P,π) is efficient if it solves the above problem with a message equal to the equilibrium

price, that is, with µ0 +µ1ξ= P (ξ) for all ξ.

The change of notation from p to m highlights the following point. In equilibrium, prices play the stan-

dard roles of affecting incentives and clearing markets, as well as the non-standard role of being a compo-

nent of the state z that agents try to learn or understand. In the planner’s solution, incentive compatibility

is not an issue and market clearing is replaced by resource feasibility. It follows that prices remain relevant

only because of the second role: they are merely “messages” (hence, m) that enter agents’ cognition.

6As mentioned earlier, our assumption that the planner can observe the state is standard for welfare economics, but may preclude
an interpretation of realistic social planning.
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2.3 An Efficient Economy With Mutual Information Costs

We first study equilibrium and efficiency in a case of the model where attention costs can be expressed as a

function K of the mutual information between ω and z, where K : R+ → R is increasing, convex, and differ-

entiable, with K ′(0) = 0. Mutual information is a statistical measure of informational dependence between

two random variables, and was first proposed as an attention cost for decision makers by Sims (1998, 2003).

Detailed derivations for all of this section’s results are in Online Appendix C.

To solve for equilibrium, we first reexpress attention costs under the (soon to be verified) conjecture that

prices are linear in fundamentals, or p = ψ0 −ψ1ξ. Because p is a function of ξ, the mutual information

between ω and z = (ξ, p) is the same as that between ω and ξ. Moreover, both ω and ξ are Gaussian, and

it is well known that the mutual information between two Gaussian random variables can be written as a

function of only their (squared) correlation.7 Thus, the costs of attention, C (a1, a2, a3), can be simplified to

cM I (ρ) ≡ K
(− log

(
1−ρ))

ρ = (a1 −ψ1a2)2

a2
3 + (a1 −ψ1a2)2

(3)

where ρ is the squared correlation between ωi and ξ. We henceforth refer to ρ as agents’ “attention.”

We next compute the benefits of attention. Fix an agent i and suppose that all other agents j ̸= i choose a

signal described by (ae
1, ae

2, ae
3) and corresponding attention ρe = (ae

1−ψ1ae
2)2

(ae
3)2+(ae

1−ψ1ae
2)2 . Agent j ′s coconut demand

is x j (ω) = 1− E[p | ω j ]. Substituting in for E[p | ω j ] and averaging over agents’ idiosyncratic signal noise,

we can derive aggregate demand as X (ξ, p) = ∫
j x j (ω)d j = 1− (ρe p + (1−ρe )ψ0). Applying market clearing,

X (ξ, p) = ξ, we find that the coefficients for the price functional are ψ0 = 1 and ψ1 = 1/ρe . That is, when all

agents j ̸= i choose attention ρe , the price faced by agent i is given by

p = P (ξ) = 1− 1

ρe ξ.

An implication is that the variance of prices is a decreasing function of agents’ attention and is minimized

under complete information (ρe = 1). Using this to compute a given agent’s flow utility (ignoring information

costs) from choosing attention ρ, we conclude that the “benefits” of attention are given by the function

b : [0,1]2 →R, where

b(ρ,ρe ) ≡ max
x

E

[
x(ω)− x(ω)2

2
+P (ξ)(ξ−x(ω))

]
= ρ−2ρe

2(ρe )2 (4)

From the derivation, it is clear that ρ is a sufficient statistic for the signal structure; it is therefore without

loss to assume that agents choose signals of the form ωi = p +aηi and choose a to achieve the desired ρ.

Combining (3) and (4), we can express the typical agent’s attention choice as maxρ{b(ρ,ρe )− cM I (ρ)}.

7To see this, consider Gaussian vector (X1, X2) with mean (µ1,µ2) and covariance matrix Σ = ((σ2
1,
p
ρσ1σ2); (

p
ρσ1σ2,σ2

2)).

The differential entropy of Xi is H(Xi ) = 1
2 log

(
2πeσ2

i

)
. The differential joint entropy of the two variables is H(X1, X2) =

1
2 log

(
(2πe)2 detΣ

) = 1
2 log

(
(2πe)2(σ1σ2)2(1−ρ)

)
. The mutual information is therefore I (X1; X2) = H(X1)+ H(X2)− H(X1, X2) =

− 1
2 log

(
1−ρ)

. In Equation 3, we absorb the scaling by 1
2 into the definition of K for convenience.
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Given the strict concavity of b in ρ, equilibrium is thus described by the following fixed point equation:

ρe ∈ argmax
ρ

{
b(ρ,ρe )− cM I (ρ)

} ⇒ ∂

∂ρ
b(ρe ,ρe ) = c ′M I (ρe ) (5)

Using almost identical logic, more formally described in Online Appendix C, we can also simplify the

planner’s problem. Conditional on any message, the planner chooses attention to solve

ρ∗ ∈ argmax
ρ

{
b(ρ,ρ)− cM I (ρ)

} ⇒ ∂

∂ρ
b(ρ∗,ρ∗)+ ∂

∂ρe b(ρ∗,ρ∗) = c ′M I (ρ∗) (6)

On the benefits side, compared to the equilibrium fixed-point, the planner internalizes the pecuniary ex-

ternality, whereby increasing one agent’s attention affects others’ budgets and utility. On the costs side, the

planner’s trade-off is identical to the agent’s. Moreover, this trade-off for the planner is unaffected by the

choice of message slope since, as observed earlier, the mutual information cost is invariant to arbitrary re-

coding of fundamentals in prices.

What are the pecuniary externalities? A direct calculation from (4) yields ∂
∂ρe b(ρ,ρ) = 0 for any ρ. This

is due to quasi-linearity: when all agents j ̸= i choose less attention, the price p becomes more volatile,

and this enter agent i ’s consumption problem; but any additional price volatility is absorbed in the agent’s

consumption of the linear good, leaving his marginal utility of wealth unaffected. It follows that the pecu-

niary externality is muted and ρe = ρ∗, i.e., the economy’s unique equilibrium coincides with the planner’s

solution. To summarize:

Proposition 1. With mutual information costs, an equilibrium exists, is unique, and is efficient.

2.4 Three Inefficient Economies

The economy studied above was efficient because externalities were muted on both the benefits and the

costs of attention. On the benefit side, this was true because of quasi-linearity. In our general analysis, com-

plete markets will play an analogous role. Focusing instead on the cost side, we now show that the absence

of an externality depended critically on the mutual information assumption. Away from this assumption,

inefficiency is possible via what we call cognitive externalities.

A Preference for “Perceptual Distance”. Consider first a case in which agents can only obtain a signal of

the form ωi = p +aηi , for some a > 0, and suffer a cost proportional to the precision of the signal:

c = 1

Var[ωi |p]
= 1

a2

This cost embodies imperfect observation in the units of prices. For example, such a cost implies that it is

more difficult to perceive price changes from $1.99 to $2.00 than price changes from $2.00 to $2.10. This

model relates to the decision-theoretic work of Hébert and Woodford (2021) on how to embody “perceptual

distance” in information costs. As these authors argue, such scale dependence in cognition is consistent

with evidence from perceptual experiments in psychophysics (see, e.g., Woodford, 2020).
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Using the transformation ρ =ψ2
1/(a2 +ψ2

1) and the observation that, in equilibrium, ψ1 = 1/ρe , we can

reexpress these “Perceptual Distance” (PD) cognitive costs as a function of one’s own and others’ attention:

cPD (ρ,ρe ) ≡
(

ρ

1−ρ
)

(ρe )2 (7)

The cost of achieving a given attention level ρ, which is the relevant notion of signal “quality” in equation 4,

increases with others’ signal-to-noise ratio. If others are more attentive, then their demands are more elastic

and equilibrium prices are less dispersed across states of nature. With “Perceptual Distance” costs, these

less dispersed prices are harder to tell apart from one another.

The cost-benefit representation of equations 5 and 6 continues to hold, but with cPD (ρ,ρe ) replacing

cM I (ρ). There is now an additional, cost-based externality, which does not net out across agents. This sug-

gests that the planner prefers lower attention than the equilibrium delivers, as is formalized below:

Proposition 2. With the costs cPD , any equilibrium is inefficient and the planner prefers to send a message

that is more volatile than the equilibrium price.

A Preference for Less Variance, or for More Coarseness. Consider next an economy in which the cost of

attention is given by

c = E[Var[p]−Var[p |ωi ]]

This cost belongs to the class of posterior separable costs studied by Caplin and Dean (2015) and Denti

(2022). Like mutual information, it can be interpreted as the expected reduction in uncertainty about p

from observing signal ωi . But uncertainty is now measured in terms of variance rather than entropy.

By the law of total variance, c = Var[E[p |ωi ]]; and by the assumption of Gaussian signals, Var[E[p |ωi ]] =
ρVar[p]. Thus, this example embeds a preference for less variance in the object that agents try to learn about

(here, prices): the more volatile prices are, the harder it becomes to track them. Because equilibrium prices

in turn are more volatile when others are less attentive, the cost of tracking prices is higher when others track

them less closely:

cLV (ρ,ρe ) = ρ

(ρe )2 (8)

This externality has the opposite sign as that studied in the previous example, and the planner would want

to optimally recode their message to be less volatile than the equilibrium price:

Proposition 3. With the costs cLV , any equilibrium is inefficient and the planner prefers to send a message

that is less volatile than the equilibrium price.

Once we move outside the present linear-quadratic-Gaussian setting, we can similarly formalize a “pref-

erence for coarseness” by assuming that the cost of attention decreases when p, the object agents try to learn

about, assumes the same value across different states of nature. Such preference is well-defined regardless

of whether p is treated as an exogenous variable (decision theory) or an endogenous one (our paper). But

because p is indeed endogenous to others’ choices, this preference introduces a cognitive externality simi-

lar to that articulated above: the planner would like to replace market signals with coarser messages, or to
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bunch prices across more states of nature. Such bunching could in turn be interpreted as shutting off some

state-contingent markets. In other words, cognitive externalities of the short discussed here could justify

“un-completing” markets.

The Sunspot Economy. As a final example, we construct an inefficient economy in which costs have a

mutual information form but still violate the notion of invariance that our later analysis will formalize. This

requires a small, but ultimately very consequential, enrichment of the setting. Whereas the exogenous state

of nature was previously ξ, the coconut endowment, it is now θ = (ξ,ν), where v ∼ N (0,1) is a new variable,

independent of ξ, that plays no fundamental role in the economy. The assumption that ν is a “sunspot” is

particularly stark, though it could just as well be a variable that is fundamental for another group of agents

that do not interact with the coconut-consuming agents. Signals are restricted to be jointly Gaussian with

the cognition state z, where z = (θ, p) = (ξ,ν, p). In our context, this means that the signals can be written as

ωi = a1ξ+a2p +a3ηi +a4ν (9)

where (a1, a2, a3, a4) ∈R4 are coefficients and ηi ∼ N (0,1) is idiosyncratic noise.

We consider two variants of the model. In the first, cognitive costs are a function K of the mutual infor-

mation between the signal ωi and the entire state variable (ξ,ν, p); in the second, costs are a function K of

the mutual information between the signal ωi and only the price p. As in our original mutual information

model, K is increasing, convex, differentiable, and satisfies K ′(0).

The model prediction depends starkly on which of the two cost formulations is used:

Proposition 4. 1. If costs are a function of the mutual information ofωi and (ξ,ν, p), then there is a unique

equilibrium. It is efficient and coincides with the one studied in Proposition 1. Moreover, the equilibrium

price is independent from ν.

2. If costs are a function of the mutual information of ωi and p, there is a continuum of Pareto-ranked

equilibria. The worst among them is the allocation from Part 1 of this result. In all other equilibria, the

equilibrium price is not independent from ν.

To build intuition for these results, consider trying to support the equilibrium allocation of our original

mutual information case (Section 2.3 and Proposition 1). As shown in the proof of that result, we can repre-

sent each agent’s optimal signal as ωi = p +σeηi for some σe > 0; moreover, p is affine in ξ. Now consider a

small deviation that transfers some weight from the idiosyncratic noise ηi to the common noise ν, or gener-

ates a signal ωi = p + (σe − ϵ)ηi + ϵν for some small ϵ. Clearly, this does not affect an individual’s inference

about p, and hence their expected utility ignoring the information cost. Under specification 1 of Proposition

4, this deviation has a positive information cost: constructing the new signal requires “learning” about an

additional component of the cognition state, ν. Therefore the deviation is not profitable. The remainder of

our proof shows formally that there are no other equilibria which involve observation of ν. Under specifi-

cation 2 of Proposition 4, by contrast, the ϵ-deviation has no information cost: the sunspot was effectively
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free to observe, since it is independent from the price. The remainder of the proof shows how to construct

equilibria using this logic. We show also that there is a limiting case of these equilibria in which agents ob-

serve ξ perfectly at zero information cost, since the price is contaminated with infinite sunspot variance.

To summarize, the difference between cases 1 and 2 in Proposition 4 comes from the fact that the second

cognitive cost makes conditioning signals on the sunspot costless.

The argument underlying inefficiency in this example does not rely on the sensitivity of payoffs and

behavior to rescaling prices, as was the case for Propositions 2 and 3. Nonetheless, the argument did rely on

the sensitivity of payoffs and behavior to a different transformation of prices: reallocating variance across

the fundamental variable ξ and the non-fundamental variable ν. Our general analysis will unify these ideas

under one notion of “invariance” of cognitive costs to transformations of the price.

Summary. In the above examples, efficiency hinged on whether attention costs were suitably invariant to

the stochastic properties of prices and substitute messages. In the subsequent analysis, we will clarify the

exact meaning of this invariance in general settings, with multi-dimensional goods, prices, and fundamen-

tals and without parametric restrictions on information acquisition. We will also formally link our results

with those in the decision-theoretic literature on costly information acquisition.

3 Model

We now introduce our general framework, which augments a standard Arrow-Debreu economy with rational

inattention. We also define our notion of invariance.

3.1 Goods, State of Nature, and Cognition State

There are N (non-contingent) goods, indexed as n ∈ {1, . . . , N }. These goods have random prices p ∈RN+ , the

distribution of which is determined in equilibrium. There is a stochastic state of nature θ ∈ Θ ⊂ R , with

distribution πΘ ∈∆(Θ). This can encode fundamental uncertainty in the economy (e.g., about endowments,

preferences, technologies) or purely non-fundamental uncertainty (e.g., sunspots). We assume, for technical

reasons, thatΘ is finite and that πΘ(θ) > 0 for all θ ∈Θ.

To introduce rational inattention in this setting, we need to take a stand on what objects about which an

agent can collect information. We denote the collection of such objects by z and refer to it as that agent’s

cognition state.8 For our main analysis, we take z = (θ, p); in an extension in Section 7.2, we discuss how to

accommodate more flexible choices. It may appear that z double counts θ, because in equilibrium p will be

expressible as a function of θ. But this is an equilibrium property and, in the decision problem of the typical

consumer or firm, we want to model the fact that θ and p appear as two conceptually distinct variables. As

one example, our specification will allow the possibility that the probability of rain and the price of umbrellas

loom differently in people’s cognition despite their tight connection in equilibrium.

8It is straightforward to let z differ across j to capture heterogeneity in what agents can possibly learn or think about. Alterna-
tively, such heterogeneity can be embedded in the attention cost functional below, while preserving the symmetry in z.
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We let π be a probability mass function over realizations of z = (θ, p) and require that it belongs in the

set P defined by the compositions of πΘ, the prior about θ, with arbitrary functions fromΘ to RN+ :

P ≡
{
π :Θ× Im f → [0,1] s.t. π(θ, p) =πΘ(θ)1 f (θ)(p), for some f :Θ→RN

+
}

(10)

where Im f is the image of f and 1 f (θ) is the indicator function for p = f (θ). We also define the π-indexed set

Zπ ≡ {(θ, p) :π(θ, p) > 0} ⊂Θ×RN+ , which returns the support of any π ∈P . We finally define fπ :Θ→Θ×RN+
with fπ(θ) = {(θ, p) : π(θ, p) > 0} for any θ ∈ Θ, which reverse-engineers the mapping from (10) associated

with π.

3.2 Inattentive Consumers

There is a unit-measure continuum of consumers, split into a finite number of types j ∈ {1, ..., J }, each with

mass µ j . Each consumer can consume goods within a set X . We assume X is a closed rectangle in RN+ , i.e.,

X =∏N
n=1[0, xmax

n ] for a vector (xmax
n )N

n=1 ≫ 0 (where ≫ denotes strict inequality for each element).9

Consumers’ payoffs over consumption are represented by the Bernoulli utility function u j : X ×Θ→ R.

We assume that, conditional on each state θ, this Bernoulli utility function is (i) continuous in x and (ii)

represents weakly monotone preferences over goods, meaning that it satisfies u j (x ′,θ) > u j (x,θ) for each

x, x ′ ∈X such that x ′ ≫ x and each θ ∈Θ. Consumption is described by a function x :Ω→X , mapping the

realizations of a signalω ∈Ω to a consumption level. We assume, for technical simplicity, thatΩ is finite and

common to all agents.

We model attention by allowing households to design their signals at a cost. Let φ(· | z) ∈ ∆(Ω) denote

the signal’s likelihood distribution conditional on cognition state realization z ∈ Zπ. We define the signal

structure φ= (φ(·|z))z∈Zπ
as the collection of likelihood functions characterizing the signal. Signal structures

are chosen from the set Φ≡∆(Ω)|Θ|. We define the information structure as the concatenation of the signal

structure and the prior, or (φ,π) ∈Φ×P . We finally let C j :Φ×P → R+ be, for each type, a cost functional

which maps information structures to utility costs. We assume that C j is continuous in its first argument

conditional on the second, to help guarantee that the decision problem stated below is well-posed.10

We close the consumer’s problem by describing their income and access to insurance. Each type- j con-

sumer has a stochastic endowment represented by e j : Θ→ RN+ and receives fraction a j of stochastic ag-

gregate firm profits, which are themselves represented by Π :Θ→ RN+ . Moreover, consumers have access to

complete markets over both the aggregate state of nature θ and the idiosyncratic signal ω. Thus, the con-

9These bounds guarantee the existence of a solution to the consumer’s problem. But since endowments are finite, the produc-
tion set is compact, and µ j > 0 for all j , it is straightforward to let, for all n, xmax

n be greater than 1/min j µ
j times the maximum

conceivable amount of the respective good, so no consumer type can reach the bound in a feasible allocation.
10Since our probability distributions are finite, it is sufficient to think of continuity in the vector space [0,1]|Ω|×|Θ|.
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sumer solves the following maximization problem:11

max
x,φ

∑
ω∈Ω,z∈Zπ

u j (x(ω),θ) φ(ω | z) π(z)−C j [φ,π]

s.t.
∑

ω∈Ω,z∈Zπ

(
p · x(ω)−p ·e j (θ)−a jΠ(θ)

)
φ(ω | z) π(z) ≤ 0

x :Ω→X ; φ(· | z) ∈∆(Ω), ∀z ∈ Zπ

(11)

As noted above, the consumer has access to complete markets not only over θ, which is standard, but also

over ω, which is specific to our analysis. This latter assumption plays a dual role. First, it provides insurance

against the idiosyncratic noise in ω. Second, it ensures that agents can satisfy their budget constraint with

equality even if none of their consumption choices are perfectly contingent upon the true state of nature.

While both of these assumptions may be unrealistic, they are consistent with two principles of our approach:

staying as close as possible to the original Arrow-Debreu model and isolating cognitive externalities as a

novel source of inefficiency. We revisit these issues in Section 7.1.

3.3 Inattentive Firms

There is a unit-measure continuum of identical firms.12 Firms, like consumers, choose two objects. The

first is a signal parameterized again by a collection φ = (φ(· | z))z∈Zπ
∈Φ. The second is a signal-contingent

production plan, y :Ω→Y , where Y ⊂RN is non-empty, is closed, and contains the zero vector (no produc-

tion). Firms maximize expected profits subject to a technological constraint, which embeds attention costs.

Formally, an output vector y ∈Y is feasible for the firm in state θ if and only if it satisfies H
(
y,c,θ

)≤ 0, where

H : RN+1 ×Θ→ R is continuous and increasing in its first N +1 elements and c measures the cost of cogni-

tion. The latter is specified as c = C F [φ,π], where C F :Φ×P → R is defined analogously to the consumers’

cost function. Finally, we introduce normalizations such that the firm can always “shut down.” That is, we

let C F (φ,π) = 0 whenever φ is such that φ(ω|z) = 1
|Ω| for allω and all z ∈ Zπ and we assume that H(0,0,θ) < 0.

Putting everything together, firm behavior is summarized in the following program:

max
y,φ

∑
ω∈Ω,z∈Zπ

(p · y(ω)) φ(ω | z) π(z)

s.t. H
(
y(ω),C F [φ,π],θ

)≤ 0,∀ (ω,θ) :φ(ω | fπ(θ)) > 0

y :Ω→Y ; φ(· | z) ∈∆(Ω), ∀z ∈ Zπ

(12)

This formulation treats firm cognition as a non-tradable, “in-house” production activity that diverts re-

sources from production, but also lets production plans respond more efficiently to demand and supply

shocks. This nests the scenario in which attention costs emerge as a linear penalty in profits by letting

H(y,c,θ) = H̃(y + vc,θ) for some function H̃ and some constant v ∈R+.

11In the sums appearing in the consumer’s problem (11), z is the same variable as the pair (θ, p). The same applies to the firm’s
problem (12) below. Finally, note that we have let attention costs enter linearly in preferences. This is standard in the literature but
is not essential for our main result: we could interpret c j =C j [φ,π] as a “bad,” i.e., as a commodity that reduces utility.

12It would be straightforward to add types of firms as well, but we abstract from this for simplicity.
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3.4 Equilibrium, Feasibility, and Efficiency

Throughout, we focus on equilibria in which strategies are symmetric within types. This is without seri-

ous loss of generality, because we can always partition types into sub-types with the opportunity to make

different decisions. We thus define equilibrium as follows:

Definition 1. An equilibrium is a profile of consumption and production strategies,
(
(x j )J

j=1, y
)
, attention

choices,
(
(φ j )J

j=1,φF
)
, a price function P :Θ→RN+ , and a prior π ∈P such that:

1. Consumers and firms optimize, respectively solving programs (11) and (12), taking as given π.

2. Markets clear, that is for all θ ∈Θ,

J∑
j=1

µ j x j (θ) =
J∑

j=1
µ j e j (θ)+ y(θ) (13)

where x j (θ) ≡∑
ω∈Ω x j (ω)φ j (ω | fπ(θ)) and y(θ) ≡∑

ω∈Ω y(ω)φF (ω | fπ(θ)) are, respectively, the average

demand of type- j consumers and the average supply of firms in state θ.

3. Profits are rebated to consumers, that isΠ(θ) = p(θ) · y(θ) for all θ ∈Θ.

4. The prior π about z is consistent with the price functional, that is fπ(θ) = (θ,P (θ)) for all θ ∈Θ.

The following two properties carry over from the equilibrium definition in the example. First, the prior

about z, which enters each agent’s cognitive cost, is an endogenous object required to be consistent with

the equilibrium price functional—this is, again, where “RI meets REE.” And second, because of a law of large

numbers applied to idiosyncratic realizations of ω, all aggregate quantities and prices are functions of θ in

equilibrium—but now θ may contain a multitude of fundamentals as well as sunspots.

Note also that Definition 1, in the spirit of the standard Arrow-Debreu framework, makes no material dis-

tinction between states of nature and “true,” non-contingent goods. The importance of this distinction for

attention choices (and, by extension, consumption and production choices) affects equilibrium aggregation

only through the aggregate (θ-contingent) demand and supply functions. As one example, if all agents opti-

mally chose to ignore the distinction between state realizations θ and θ′, this would manifest at the aggregate

level as x̄ j (θ) = x̄ j (θ′), for all types j , and ȳ(θ) = ȳ(θ′). In our proof of our main results (including Theorem

1), leveraging this “aggregate” representation of the economy, instead of the underlying disaggregate signal

and action choices, will simplify our analysis.

We next turn to defining feasibility. As in the example of Section 2, our notion of feasibility allows for

the replacement of the price variable p in the agents’ cognition state with a message m. We require that this

message, like the equilibrium price, be representable as a function M : Θ→ RN+ . The consumer and firm

problems are adjusted to redefine the cognition state as z = (θ,m), which has a prior π ∈P which must now

be consistent with the message function M .

Definition 2. A feasible arrangement is a profile of consumption and production strategies,
(
(x j )J

j=1, y
)
,

attention choices,
(
(φ j )J

j=1,φF
)
, a message rule M :Θ→RN+ , and a prior π ∈P such that:
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1. Consumption and production are informationally feasible, that is x j :Ω→X for all j and y :Ω→Y .

2. Consumption and production are technologically feasible, that is equation 13 holds along with

H
(
y(ω),C F [φF ,π],θ

)≤ 0,∀ (ω,θ) :φF (ω | fπ(θ)) > 0 (14)

3. The prior π about z is consistent with the message rule, that is fπ(θ) = (θ, M(θ)) for all θ ∈Θ.

We define efficiency as Pareto optimality under the aforementioned notion of feasibility:

Definition 3. An equilibrium is efficient if there does not exist a feasible alternative such that (i) all agents

are weakly better off and (ii) a positive measure of agents is strictly better off. An economy is efficient if all

its equilibria are efficient.

As discussed in Section 2.2, replacing prices with messages allows our question about the “economy of

knowledge” to be well-posed. Such messages are herein restricted to live in the same space as prices. This

simplifies the exposition by making sure that z itself remains in the same space as we move back and forth

between equilibria and planning alternatives. In Section 7.2, however, we discuss how to accommodate two

related extensions: to enrich the messages sent by a planner and to let endogenous objects other than prices,

such as aggregate trades or taxes, enter the cognitive process as distinct elements of z. Finally, note that our

efficiency notion (Definition 3) fully internalizes attention costs, similarly to how its conventional coun-

terpart fully internalizes agents’ preferences. As mentioned in the Introduction, this is a crucial difference

between our approach and the alternative taken in Gabaix (2014, 2016) and Farhi and Gabaix (2020).

3.5 Invariance of Attention Costs

We now define the invariance assumption that will underpin our version of the First Welfare Theorem (as

well as its converse). Toward that goal, we first define “transformations of information structures” in terms

of functions that alter the cognition state z and map back to the same domain:

Definition 4 (Transformations of Information Structures). Consider two information structures (π,φ) and

(π̃, φ̃) and a function g : (Θ×RN+ ) → (Θ×RN+ ). We say that (φ̃, π̃) is the transformation of (φ,π) under g if

π̃(z) = ∑
z ′∈Zπ

π(z ′)1z (g (z ′)) ∀z ∈ Zπ̃ (15)

φ̃(ω|z) =
∑

z ′∈Zπ
φ(ω|z ′)π(z ′)1z (g (z ′))

π̃(z)
∀ω ∈Ω, z ∈ Zπ̃ (16)

where 1z is the indicator function that its argument equals z.

Such transformations amount to a change of variables in the following sense. Consider a random vari-

able z and replace it with the random variable z̃ = g (z), for some g . If the former’s distribution is π ∈P , then

the latter’s is π̃ ∈ P constructed as in (15). Furthermore, if the agent had chosen a signal φ for the original
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random variable and wishes to preserve the informational content of that original signal with respect to the

new random variable z̃, then the new signal φ̃ would be constructed according to (16).

We next define a sufficiency relationship between information structures, recasting the familiar defini-

tion of a sufficient statistic in our language:

Definition 5 (Sufficiency). Consider two information structures (φ,π) and (φ̃, π̃) such that (φ̃, π̃) is the trans-

formation of (φ,π) under some g : (Θ×RN+ ) → (Θ×RN+ ). We say that π̃ is sufficient for π with respect to φ if

φ(ω | z) = φ̃(ω | g (z)) for all ω and all z such that π(z) > 0.

This definition is equivalent to saying that the distribution of z conditional on z̃ does not depend on ω.

This is trivial if g is bijective, or merely “relabels” states, and a meaningful restriction when g is surjective,

or both “relabels and combines” states. In particular, if the original signal structure allowed one to learn the

relative likelihood of two states z ̸= z ′ such that g (z) = g (z ′), then the sufficiency property does not hold.

We now define invariance with respect to specific classes of transformations:

Definition 6 (Invariance). Fix a set G ⊆ {g : (Θ×RN+ ) → (Θ×RN+ )}. Consider any function g ∈ G and any

two information structures (φ,π) and (φ̃, π̃) such that (φ̃, π̃) is the transformation of (φ,π) under g . A cost

functional C is invariant with respect to G if C [φ,π] =C [φ̃, π̃] whenever π̃ is sufficient for πwith respect to φ.

Within the specified set of transformations, invariance requires that rescaling or relabeling the states

does not affect attention costs, while merging particular states has no effect provided the signal did not

originally distinguish between those states.

Relation to Literature. In Appendix B, we prove that the mutual information ofωwith z is invariant by our

definition (Corollary 6). We also connect our invariance notion to a related one from the economic literature

on flexible information acquisition (Caplin et al., 2022) and the statistics literature on information geometry

(Amari and Nagaoka, 2000; Amari, 2016). More specifically, we show that our notion of invariance is implied

by a stronger property that requires both what we call invariance and what we call monotonicity, which we

will introduce in Section 6.2 to show a supplemental result.

The tight link between mutual information and invariance is reinforced by various results in the litera-

ture establishing that, within different classes of studied cost functions, mutual information is implied by

“invariance under compression” (Caplin et al., 2022), “weak compression invariance” (Bloedel and Zhong,

2021), and “informational separability” (Tian, 2021). In particular, Caplin et al. (2022) show that mutual

information is basically the same as invariance within the class of uniformly posterior separable costs.

By contrast, the neighborhood-based costs of Hébert and Woodford (2021), adapted to our setting with

a fixed set of disjoint neighborhoods covering Θ×RN+ , are not invariant. Intuitively, when agents’ costs are

especially high for distinguishing prices in certain neighborhoods, then the costs of certain strategies will

change if prices in different states are moved in and out of common neighborhoods. Similarly, the log-

likelihood ratio cost of Pomatto et al. (2023) is invariant only under the trivial case in which the parameters

controlling the distinguishability of pairs of states are identically equal to a constant.
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Figure 1: Visualization of a Non-Invariant Cost Functional

(1) (2) (3)

Technology

Likelihoods

Prices
Cost

P(A) = 3, P(B) = 5 P(̃A) = 4, P(̃B) = 5P(̃A) = 4, P(̃B) = 5
1/2 1/2 2/3

2 3 4 5 6

Notes: Blue corresponds with state A and orange with state B . The first row of diagrams visualizes the agent’s signal "technology"

and the second plots, in a two-color bar graph, their likelihood distributions.

We refer the reader to Hébert and La’O (2023) for a complementary, and more detailed, discussion of

how the invariance condition in our paper and theirs alike connects to the literature.

An Example. Before proceeding to the main result, we provide a concrete example of what invariance en-

tails in a consumer decision problem. A consumer lives in a world with two states of nature with equal prior

probabilities: θ ∈ Θ = {A,B}, with πΘ(A) = πΘ(B) = 1
2 . There is a single price, p, taking values in R+. The

cognition state is z = (θ, p) ∈ {A,B}×R+. There are two possible price functionals, denoted by P and P̃ .

The first sets P (A) = 3 and P (B) = 5, and second sets P̃ (A) = 4 and P̃ (B) = 5. These mappings correspond

to two possible distributions for z, denoted by π and π̃, with respective supports Zπ = {(A,3), (B ,5)} and

Zπ̃ = {(A,4), (B ,5)}. Agents can construct signals of these variables, which lie in the space isΩ= {a,b}.

We now construct a cost that does not satisfy invariance. Imagine that the agent has no way to directly

learn θ; perhaps they do not even understand what “A” and “B” mean. But they can try to learn p. In

particular, they can choose among a continuum of “observations,” indexed by η≥ 0. Making an observation

of type η costs 1/(η+1) and returns an outcome that is distributed uniformly on the interval [p −η, p +η].

The agent then applies the following algorithm to map observations to signals. If the outcome is uniquely

consistent with the price in A (respectively, B), the agent receives signal ω = a (respectively, ω = b) with

probability 1. Otherwise, the agent receives either signal with probability 1
2 . This procedure defines a joint

distribution φ over (ω,θ, p), and we define C [φ,π] as the lowest cost of observation generating a given φ.

Why does this not satisfy invariance? Imagine that, when the price mapping is P , the consumer picks η=
1 at cost C = 1/2 and perfectly distinguishes the two states at the lowest possible cost. This is demonstrated in

Column 1 of Figure 1, which visualizes the signal technology and plots the likelihood distributions. Next, see

that, when the price mapping is P̃ , the same experiment ofη= 1 yields a different and strictly less informative

signal (Column 2). Finally, see that the cheapest method of preserving the informational content of the

original signal under the new price functional requires a lower η and therefore incurs a strictly higher cost

(Column 3). The cost functional is not invariant, because the costs of creating the same “information” (i.e.,
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perfectly distinguishing the states) changed when we applied a transformation mapping P to P̃ .13

On the other hand, any cost functional which depended only on the signal distributions visualized in the

second row of Figure 1, without reference to the “names” or values of the states, would take an equal value in

columns (1) and (3) and therefore be invariant with respect to this transformation. The mutual information

of ω and (θ, p) is one such cost functional.

4 (In)Efficiency of Inattentive Economies

In this section, we first state and prove our version of the First Welfare Theorem. This in turn leads to our

second main result, which illustrates how a failure of invariance opens the door to inefficiency via cognitive

externalities.

4.1 A First Welfare Theorem

Let Gp be the subset of functions (Θ×RN+ ) → (Θ×RN+ ) that transform the price component of the cognition

state, i.e., they can be written as g (θ, p) = (θ,h(p)) for some h :RN+ →RN+ . We now state our first main result:

Theorem 1 (First Welfare Theorem). If all agents have attention costs that are invariant with respect to Gp ,

then all equilibria are efficient.

Below, we show how Theorem 1 builds on two intermediate results, which together make clear both the

logic behind this theorem and the separate roles played by complete markets and invariance.

Preliminaries: An Equivalent Economy. To set up our argument, we first define a notion of preferences

and technology at the level of type-specific aggregate quantities, x j (θ) and y(θ). This representation sub-

sumes the attention choice to the preferences and technology of a “twin economy,” and clarifies what is and

is not standard about our problem.

Let x ∈X |Θ| be a shorthand for the vectorization of state-specific consumption, (x(θ))θ∈Θ. We define the

following value function for each consumer type j that optimizes over consumption and signal structures

subject to the constraint that the average consumption across realizations of signals should not exceed an

available basket x :
u j (x ,π) ≡ max

x,φ

∑
ω,θ

u j (x(ω),θ) φ(ω | fπ(θ)) πΘ(θ)−C j [φ,π]

s.t.
∑
ω

x(ω)φ(ω | fπ(θ)) ≤ x(θ), ∀θ ∈Θ

x :Ω→X ; φ(· | fπ(θ)) ∈∆(Ω), ∀θ ∈Θ

(17)

Under the maintained assumptions that (i) Ω is finite, (ii) X is compact, and (iii) u j (·,θ) and C j [·,π] are

continuous, Weierstrass’ theorem guarantees that this program has a solution and therefore u j : X |Θ|×P →
13The fact that the cost increased, rather than decreased, is irrelevant for invariance. But it is a violation of the monotonicity

property that we introduce in Section 6.2.
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R is well-defined. We refer to u j (x ,π) as a reduced preference for the basket of state-contingent commodities

x , which depends on the prior π as an auxiliary parameter.

The consumer program (11) can now be rewritten as a more standard consumer optimization with the

altered preferences defined above:

max
x

u j (x ,π)

s.t.
∑
θ

(P (θ) · x(θ)−P (θ) ·e j (θ)−a jΠ(θ))πΘ(θ) ≤ 0
(18)

Two specific features of this representation are important. First, the reduced preferences inherit monotonic-

ity in the goods space from the primitive utility function u j .14 This is formalized as Lemma 2 stated and

proven in the Appendix. Second, prices affect preferences directly via the prior π (and, more fundamentally,

their influence on the information-acquisition problem in Program 17). This feature embodies the cognitive

externality on the consumer side of the economy

For firms, we analogously let y = (y(θ))θ∈Θ ∈Y |Θ| be the vectorization of state-specific consumption and

define, for each prior π, the following reduced production set:

F (π) ≡
{

y ∈Y |Θ| : ∃ (y,φ) s.t.:
∑
ω

y(ω)φ(ω | fπ(θ)) ≤ y(θ),∀θ ∈Θ

H
(
y(ω),C F [φ,π],θ

)≤ 0,∀ (ω,θ) :φ(ω | fπ(θ)) > 0

y :Ω→Y ; φ(· | fπ(θ)) ∈∆(Ω), ∀θ ∈Θ
} (19)

This set describes the combinations, across goods and states of nature, of the aggregate production levels

that are both technologically and cognitively feasible: that is, they can be disaggregated with at least one

attention strategy φ= (φ(· | z))z∈Zπ
and a production plan y :Ω→Y . The representation further extends the

metaphor from Section 3.3 about attention as an “in-house” productive activity.

The firms’ profit maximization problem then reduces to the following program:

max
y

∑
(P (θ) · y(θ))π(θ)

s.t. (y(θ))θ∈Θ ∈ F (π)
(20)

This is like the profit-maximization problem of a standard, attentive firm, except that the production set is

allowed to depend on the prior. This embodies the cognitive externality on the firm side of the economy.

It is trivial to show that any equilibrium of the original economy corresponds to an equilibrium of the

reduced economy, in terms of implying the same aggregate outcomes and payoffs. Moreover, if there exists a

Pareto dominating feasible allocation in the original economy, there must also be one in the twin economy.

Thus, it is sufficient to prove the First Welfare Theorem in the twin economy.

14The use of such monotonicity in the proof of Proposition 5 could be relaxed for an appropriate form of local non-satiation, as in
our earlier draft (Angeletos and Sastry, 2019).
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Step One: Efficiency Ignoring Messages. We now state a restricted version of the First Welfare Theorem

that removes the planner’s flexibility to replace prices with other messages, but also holds without any addi-

tional assumption on attention costs:

Proposition 5. For any equilibrium with price functional p = P (θ), there does not exist a Pareto dominating

allocation that is feasible with message m = P (θ).

By restricting the messages to replicate the equilibrium prices, we fix π in the reduced preferences and

production sets. The rest of the proof then reads much like the familiar, textbook argument for why com-

petitive equilibria can not be Pareto dominated (e.g., section 16.C of Mas-Colell et al., 1995). We provide the

proof in Appendix A.1.

It is worth emphasizing that this intermediate result hinges on our expanded notion of complete mar-

kets. In particular, although the step from our twin-economy representation to Proposition 5 depends solely

on complete markets over θ and on the aforementioned restriction on messages, the assumption of com-

plete markets over ω is crucial for obtaining our twin-economy representation in the first place. We revisit

this point in Section 7.1. But as already mentioned, the key rationale for this assumption is that it allows us

to accomplish two goals at once: to illustrate that rational inattention per se need not cause inefficiency and

to draw attention to the question of whether the price system is the best way to economize attention costs.

Proposition 5 sets the stage by abstracting from this question; the rest of the paper zeroes in on it.

Step Two: Efficiency With Messages. The translation from Proposition 5 to Theorem 1 uses informational

invariance. We first establish the following result: if attention costs are invariant to transformations of the

price component of the economic state, then preferences and production sets do not depend directly on the

stochastic properties of prices. By the same token, the cognitive externality, or the dependence of prefer-

ences and technologies on the endogenous part of the prior π, is muted.

Lemma 1. If consumers’ attention costs are invariant with respect to Gp , there exist functions û j : X |Θ| ×
∆(Θ) →R such that the reduced preferences satisfy u j (x ,π) = û j (x ,πΘ) for all x ∈X |Θ| and allπ ∈P . Similarly,

when firms’ attention costs are invariant with respect to G p , there exists a correspondence F̂ :∆(Θ)⇒Y Θ such

that the reduced production set satisfies F (π) = F̂ (πΘ) for all π ∈P .

To prove this Lemma, we observe that each agent’s cognitive cost, C x for x ∈ {1, . . . , J }, can be written

independent of the price functional. Select an arbitrary element p ∈ RN+ and define gp = {(θ, p) 7→ (θ, p)} as

the transformation that “eliminates” the variation of prices from the cognition state. For any π, let πp be the

transformed prior under gp . Since gp ∈ Gp , invariance within Gp guarantees that C x [φ,π] = C x [φ,πp ] for

any φ and π. It follows that we can uniquely define a new cost functional Ĉ x :Φ×∆(Θ) by taking Ĉ x [φ,πΘ] =
C x [φ,πp ] for eachφ and any arbitrary choice of p. As one example of how this Lemma applies to an invariant

cost functional, we can observe that the mutual information between the signal ω and the cognition state

z = (θ, p) (“C ”) can be rewritten as the mutual information between the signal ω and only the fundamental

state θ (“Ĉ ”). The definitions of reduced preferences and production sets can then be applied with these

new cost functionals to construct representations û j and F̂ .
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This result has an even stronger implication in the context of general equilibrium. If all agents’ cost func-

tionals satisfy invariance with respect to Gp , as assumed in Theorem 1, then there exists an equivalent twin

economy (i.e., with the same equilibria, feasible outcomes, and Pareto ranking) in which cost functionals are

written only in reference to the fundamental state. Therefore the cognitive externality, which as established

earlier manifested as dependence of preferences and production sets on the endogenous component of the

prior π, is absent by assumption.

The proof of Theorem 1 is then completed by using this Lemma to establish that there cannot exist a

Pareto dominating allocation even with the use of arbitrary messages. Imagine there were. Lemma 1 implies

that each consumer’s payoff as well as the feasibility constraints would be identical under the message m =
P (θ). Therefore, the allocation must also be implementable with that message; but Proposition 5 implies

that such an allocation cannot exist. This concludes the proof of Theorem 1.

Finally, before proceeding, we note an implication of Theorem 1 that is especially relevant for the ex-

isting literature on equilibrium economies with rational inattention. A trivial case in which attention costs

are invariant with respect to transformations of the price is the case when costs depend only on the joint

distribution of signals and the exogenous state θ. We formalize below that these economies are efficient:

Corollary 1. Define a state-tracking economy as one in which all agents’ attention costs can be written as

C (φ,π) = Ĉ (φ,πΘ), for all φ ∈ Φ and π ∈ P , and some Ĉ : Φ×∆(Θ) → R. In any state-tracking economy, all

equilibria are efficient.

The state-tracking simplification is common in some macroeconomic applications (e.g., Angeletos and

La’O, 2020; Colombo et al., 2014; Maćkowiak and Wiederholt, 2015; Tirole, 2015; Gul et al., 2017), although

it is inconsistent with our motivation, the decision-theoretic literature we relate to, and a large behavioral

literature, all of which emphasize cognition about prices or other variables that may be exogenous to the

individual decision maker but certainly not to the economy as a whole. Thus any results about efficiency or

inefficiency in such prior works have abstracted from the kind of cognitive externality we have emphasized

here and therefore did not hinge on informational invariance in any form.

4.2 Non-Invariant Costs, Cognitive Externalities, and Inefficiency

Theorem 1 established that the invariance condition is sufficient for efficiency. A key argument in the proof

of Theorem 1 was that invariance in an inattentive economy translates to absence of payoff externalities in

its twin, attentive economy. In this sense, the failure of invariance opens the door to inefficiency in basically

the same way as, for example, pollution or congestion. However, “opening the door to inefficiency” is not

the same as guaranteeing inefficiency: externalities—of either the standard or the cognitive type—may be

null in equilibrium even if they are nonzero in general.

To develop intuition, consider an inattentive endowment economy with a competitive equilibrium de-

scribed by its twin-economy consumption vectors (x j∗)J
j=1 and price functional P∗, with vectorization p∗.

Assume, for illustration, that the reduced payoffs u j (x , p ,πΘ) are differentiable in the first two arguments.
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Under these assumptions, the competitive equilibrium is efficient if and only if, for some non-negative

Pareto weights χ j , the allocations and prices solve

max
x j ∈X |Θ|,p∈RN |Θ|

+

J∑
j=1

χ j u j (x , p ,πΘ)

s.t.
J∑

j=1
µ j x j ≤

J∑
j=1

µ j e j

(21)

where the e j are the vectorized endowments. In this problem, the planner can be thought to choose alloca-

tions and prices without any constraints related to market implementability. The prices are therefore merely

“messages,” as we have interpreted throughout. The first-order condition with respect to p is

J∑
j=1

χ j ∇p u j (x j , p ,πΘ) = 0 (22)

where ∇p denotes the gradient over p . This condition, which is necessary for efficiency, asserts that there

are no first-order effects of manipulating the informational content of prices. When all agents’ costs are

invariant, each term of the sum in equation 22 is zero. When at least one agent’s cost is non-invariant, at least

one term may be nonzero at some (x j )J
j=1 and p . What we do not generally know is (i) whether this happens

at the equilibrium point and (ii) whether the entire sum is nonzero, i.e., whether cognitive externalities do

not cancel out across agents.

Building on this logic, it is easy to construct both efficient and inefficient examples of economies with

non-invariant costs. Specifically, start with any economy that satisfies Theorem 1 and construct a non-

invariant economy, parameterized by ϵ ̸= 0 and p# ∈ RN S , in which all primitives are the same as in the

original economy except that the cost functionals are modified as follows, for all i ∈ {1, . . . , J }∪ {F } :

C i
ϵ,π# [φ,π] =C i [φ,π]−ϵ||p(π)−p#|| (23)

where p(π) is the vectorization of the price functional encoded in the prior π and || · || denotes the Euclidean

norm. The equilibria of the original economy remain equilibria in the new economies: by design, the exter-

nality affects welfare without affecting choice. Furthermore, if we pick any of these equilibria and let p∗ be its

vectorized prices, the following is immediate: the equilibrium is inefficient as long as p∗ ̸= p#. This follows

directly from the fact that the planner can simply send a message M ̸= P∗ along with the original, equilib-

rium allocation to obtain a Pareto improvement. Moreover, the result holds for arbitrarily small ϵ, which

in some sense correspond to arbitrarily small preference deviations from the efficient, invariant economy.

However, the following is also true: if p∗ = p# and ϵ< 0, the equilibrium remains efficient despite the failure

of invariance. This is because cognitive externalities happen to be minimized at the equilibrium.15

We can also re-interpret the examples above in the more familiar language of payoff externalities. Start

with an economy in which there are no externalities and consider a perturbation in preferences that adds

15We thank an anonymous referee for pointing out this second example.
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an externality from the consumption of a specific good (“oil”). If this perturbation is such that, starting from

equilibrium, everybody can be made better off by reducing (or increasing) the aggregate consumption of oil,

then this perturbation guarantees inefficiency. But if this perturbation is such that any negative externality

happens to be minimized in equilibrium, then the perturbation does not upset efficiency.

To sum up, guaranteeing inefficiency requires not only that invariance fails but also that this presents

the planner with a specific direction for improving welfare. The examples of Section 2.4 illustrated what

this could mean in our context: welfare could be improved either by increasing or by reducing attention.

Below, we generalize this idea by providing a sufficient condition on attention costs such that a direction of

improvement exists.

Definition 7. Costs are “strongly” non-invariant if the following property holds: for every π ∈ P that rep-

resents prices that differ across states,16 and every ((φ j )J
j=1,φF ) ∈ ΦJ+1 that embodies the collection of

information for all agents, there exists a g ∈ Gp and associated transformations
(
(φ̃ j )J

j=1, φ̃F , π̃
)

such that

C j [φ j ,π] ≥C j [φ̃ j , π̃] for j ∈ {1, . . . , J ,F } with strict inequality for at least one type.

Theorem 2. Suppose that costs are strongly non-invariant and consider any equilibrium in which prices vary

across some states and all consumers collect some information. Any such equilibrium is inefficient.

Definition 7 embeds two key assumptions: that all agents’ cost functionals display meaningful depar-

tures from invariance; and that the same direction of perturbation can lowers costs for all agents. The sec-

ond requirement is of course not an additional restriction if there is a single type of agents. Also, the first

requirement is satisfied by our inefficient examples in Section 2.4, as well as by the graphical example in

Section 3.5. In the latter example, moving the prices closer together always economized on costs under any

information acquisition strategy. It is also satisfied by cost functionals that continuously specify the role

of perceptual distance or difficulty in distinguishing nearby states, like a version of the log likelihood ratio

cost in Pomatto et al. (2023) with a fixed mapping between state values and the parameters controlling the

distinguishability of states.17 In these cases, there may always exists some transformation (e.g., reducing the

distance between different states’ spot prices in RN+ ) that economizes on cognitive costs.

In terms of our oil analogy, the equivalent of Definition 7 would guarantee that, starting from equilib-

rium, there is a direction of change in the aggregate consumption of oil—for example, either a decrease or an

increase—that would improve welfare for all agents. This accommodates possible heterogeneity in the ex-

tent of externality, but not heterogeneity in its sign. Consistent with this intuition, Proposition 2 establishes

that Assumption 7 is indeed sufficient for all equilibria to be inefficient, except potentially for the following

trivial cases: when prices are constant across states, or when all consumers collect no information.

16That is, there does not exist any element ω ∈Ω such that φ(ω | θ) = 1 for all θ ∈Θ; and there does not exist a vector p ∈ RN+ such
that π(θ, p) =πΘ(θ) for all θ ∈Θ.

17In Pomatto et al. (2023), the “distinguishability” parameters are theβi j corresponding to pairs of states i , j ∈Θ. Ifβi j ∝ (1− j )−2,
as derived in that paper’s Proposition 2 under additional restrictions, the LLR cost is globally non-invariant.
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5 Interpretation and Discussion

We now return to the two motivating questions raised at the beginning of the Introduction.

5.1 Non-Paternalistic Behavioral Economics

The first question raised in the Introduction was whether inattention per se causes a failure of the First Wel-

fare Theorem. Our first main result, Theorem 1, gave a negative answer under three key assumptions: that

our invariance condition holds; that markets are complete in the properly expanded sense; and that inat-

tention is rational, i.e., the product of optimizing behavior subject to cognitive limitations.

Needless to say, none of these assumptions have to hold in practice. But realism is not the point of either

the standard First Welfare Theorem or our variant. Rather, by spelling out the conditions that suffice for ef-

ficiency, the goal is to give guidance on the precise assumptions that could justify government intervention.

Seen from this perspective, a key contribution of our paper is to clarify that rational inattention does

not share the normative implications of the “behavioral” alternatives considered in Gabaix (2014, 2017) and

(Farhi and Gabaix, 2020). The reason is simple but important: by recasting what looks like an “optimizing

friction” as the product of rational behavior subject to attention costs, and by including these costs in welfare

calculations, one finds that the invisible hand continues to do its magic despite people’s inattention. More

succinctly, what drives the normative conclusions of Gabaix (2014, 2017) and Farhi and Gabaix (2020) is not

that people are inattentive but rather that their planner is paternalistic: she does not internalize agents’

attention costs and she treats their inattention as an irrational mistake that ought to be corrected.

At the same time, our analysis shows how exactly inattention can open the door to inefficiency with-

out such a paternalistic stance. One possibility, which we have abstracted from but return to in Section

7.1, is that inattention introduces uninsurable idiosyncratic risk. The other possibility, which we choose to

emphasize in this paper, is that inattention introduces cognitive externalities. We next discuss how this par-

ticular channel of inefficiency speaks to Hayek’s (1945) argument, as well as how it relates to recent decision-

theoretic and experimental advances.

5.2 Revisiting the Economy of Knowledge

Consider now our formalization of Hayek (1945): does the price system optimally economize attention costs

relative to other means of communication and coordination? Theorem 1 says “yes,” under a specific as-

sumption about the model of inattention, the invariance condition.

But this lesson comes with the following important caveat: under the invariance condition used to guar-

antee efficiency, a social planner could implement the same outcomes by merely announcing the state of

nature and a completely degenerate message:

Corollary 2. Under the conditions of Theorem 1, any equilibrium can be replicated with a feasible mechanism

that uses the same consumption, production, and attention strategies but replaces prices with an “uninforma-

tive” message rule, namely a rule M such that M(θ) = m for all θ and for arbitrary m ∈RN+ .
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This result is immediate from the last step of our proof of Theorem 1. In the context of Hayek’s economy

of knowledge, the result says that the same conditions that guarantee the efficiency of markets also imply

that there is no welfare loss from scrapping market signals altogether and, instead, having agents redirect

all their attention to learning the underlying state of nature alone. The “economization of knowledge” in

Theorem 1 is weak. It does not rely on prices’ coarsely representing the state of nature, or repackaging the

state of nature in a cognitively friendly manner, but instead on the agents’ ability to costlessly generate an

equivalent transformation of the state of nature in their minds.

It may be useful to return to the illustration of Section 3.5. Imagine that the state θ ∈ {A,B} represented

the primitive demand shifter for another agent in the economy. Our example cost was motivated by the

idea that learning about θ was prohibitively difficult, while learning about prices was feasible but scale-

dependent. This mapped to a failure of our invariance condition. Mutual information costs, on the other

hand, implied that there was no difference between learning “directly” about this taste (e.g., via direct re-

search) versus learning about prices. These costs were, in light of Theorem 1, compatible with efficiency.

More generally, this presents the following paradox: the idea that markets strictly economize knowledge

seems most meaningful in cases that open the door to inefficiency. Away from invariance, the invisible hand

may naturally do better than the centralized mechanism with degenerate messages from Corollary 2. But an

optimal mechanism might do even better.

Policies for a Better Economy of Knowledge. How exactly can a planner improve welfare in economies in

which failures of invariance lead to inefficiency, and how does this relate to Hayek’s logic about the price

system? While our notion of feasibility for the social planner allows for manipulation of both allocations and

prices (messages), our argument centered around cognitive externalities suggested that only manipulation

of prices was necessary to achieve welfare improvements. This was hinted at in the proof of Proposition 2,

which showed that, in globally non-invariant economies, the social planner could achieve a Pareto improve-

ment merely by announcing a message that differed from the equilibrium price. Provided that the planner

could induce the “correct” prices via taxes and transfers, such intervention would be sufficient to achieve a

Pareto improvement.

This argument can be made more concrete in the example of Section 2. The proof of Proposition 1

showed that a small tax would only have a second-order welfare loss in terms of distorting consumption and

attention choices, regardless of the cost functional. But if we were in a case in which invariance failed for the

cost functional (e.g., the examples of Section 2.4), the implied change in the stochastic properties of prices

could have a first-order welfare gain via attention costs.

What would such welfare-improving taxation look like in the example? Assume that the planner can

impose a flat, non-contingent tax τ on coconut expenditure. The demand x of a consumer with signal ω is

given by x = 1− (1+τ)E[p|ω] and, as a result, the equilibrium price satisfies p = 1− 1
(1+τ)ρξ, where ξ is the

unknown endowment of coconuts and ρ is the squared correlation of the agent’s signal with ξ. For a given

ρ, a positive tax makes demands more elastic and, hence, prices less dispersed across states of nature. In

the efficient, mutual information benchmark, Proposition 1 implies that the optimal tax is τ= 0. In the “per-
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ceptual distance” economy, the arguments of Proposition 2 show that small positive taxes improve welfare

because they increase price variance and thus make inference about correct choice easier. In the “variance

penalty” economy, the arguments of Proposition 3 show that small subsidies improve welfare because they

decrease price variance and make inference about correct choice easier.

5.3 Invariant Costs: Characterization and Experimental Evidence

Our analysis has equated the non-existence of cognitive externalities and the informational optimality of the

market mechanism to the invariance assumption. We now discuss (i) how restrictive is invariance among

the class of sensible information costs and (ii) the available evidence on it.

Characterization. As mentioned in Section 5.3, our notion of invariance is closely connected to related no-

tions from the statistics literature on information geometry (Amari, 2016), which have recently been applied

in information economics by Hébert and Woodford (2021), Hébert and La’O (2023), and Caplin et al. (2022).

In Appendix B, we show, via arguments familiar from other decision-theoretic applications, that mutual in-

formation costs satisfy invariance. Thus:

Corollary 3. If all agents’ attention costs are given by (any transformation of) the mutual information between

ω and z, then all equilibria are efficient.

Our notion of invariance is closely related to a property of state-dependent stochastic choice data de-

fined by Caplin et al. (2022), invariance under compression. Loosely speaking, this property requires that

observed stochastic choice patterns be invariant to relabeling states of nature and/or merging those that

correspond with identical payoffs. Theorem 3 of Caplin et al. (2022) establishes that mutual information

is the only cost that is consistent with invariance under compression among uniformly posterior separable

costs, a subset of the posterior separable class.18 This confines attention to a narrower class than the one

allowed in our analysis, but suggests that one can loosely think of the provided condition for efficiency as

synonymous with mutual information costs. In this sense, we justify the following “if and only if” result:

Corollary 4. Consider the class of uniformly posterior separable costs, as defined in Caplin et al. (2022). Within

this class, Hayek’s (1945) argument about the informational optimality of the price system, as formulated

herein, is valid if and only if Sims’s (2003) proposal for how to measure attention costs is also valid.

As for the broader class of posterior separable costs, Theorem 2 of Caplin et al. (2022) says that consis-

tency of stochastic choice data with invariance under compression holds if and only if the cost functional is

invariant in the sense of Amari and Nagaoka (2000). In light of the previous discussion of how this notion

in turn relates to ours, it seems a safe guess that Theorem 2 of Caplin et al. (2022) extends outside the pos-

terior separable class with our expanded definition of invariance. We conclude that the combination of our

results with those of Caplin et al. (2022) provides a pathway to test the key assumption on cost functionals

that underpins efficiency, and Hayek’s (1945) economy of knowledge, in the environment that we study.

18See Section 4.1 and Definition 3 in Caplin et al. (2022).
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Experimental Evidence. The best available evidence on the failure of invariance comes from perceptual

experiments. In these experiments, there is an objective “state of the world” (e.g., “51 of 100 balls are red”),

participants in the laboratory observe some representation of that state (e.g., a picture of the 100 red or blue

balls), and participants then make a decision whose payoff depends on the state (e.g., electing to receive a

payment if more balls are red). Dean and Neligh (2022) design such an experiment, with the aforementioned

set-up, to test numerous axioms of state-dependent stochastic choice including invariance under compres-

sion. Their experimental data reject invariance under compression, and the authors propose a variant of the

Shannon mutual information model that can rationalize the results.

In an earlier perceptual experiment, Shaw and Shaw (1977) had subjects try to recall the identity of a

symbol (a letter E, T, or V) which was briefly displayed, and varied the location of the letter in the display.

In their data, subjects are more able to distinguish letters if those letters consistently appear in the same

locations. Woodford (2012) interprets this as a rejection of the mutual information model’s implication that

the probabilities of a decision-irrelevant state, the location of the symbol, are irrelevant for decisions.

A number of recent theoretical works (e.g., Pomatto et al., 2023; Morris and Yang, 2022; Hébert and Wood-

ford, 2021) have explored the formal underpinnings for cost functionals that embody various dependencies

on the physical attributes of the state space. These latter two works, in particular, prioritize the idea that

distinguishing “closer” states in some metric may be more difficult, like in the example of Section 2.4.

But with the exception of suggestive evidence on nominal illusion, there is comparatively less research

on the dependence of consumer or firm decisions on scale or other stochastic properties of prices, which

is the exact setting of interest. While complete invariance seems unlikely, there are plausible economic

arguments for departures in both directions as illustrated in Section 2.4. Moreover, as noted by the existing

literature, it is not obvious how externally valid perceptual experiments are for these economic settings. Our

results thus provide a new, macroeconomic motivation for testing invariance in laboratory settings that even

more precisely approximate consumer and firm choices in markets.

6 Additional Results

In this section, we show several additional results which address other equilibrium properties of inattentive

economies: equilibrium existence, the implementability of Pareto optima, and the absence or presence of

non-fundamental volatility in efficient equilibria.

6.1 Equilibrium Existence and the Second Welfare Theorem

Theorem 1 presumed existence of equilibria and was silent on when Pareto optima exist and can be imple-

mented as equilibria with transfers.19 In this subsection, we fill both gaps. Our main observation is that, in

the twin-economy representation developed in Section 4.1, the key ingredients for proving equilibrium exis-

tence and, by extension, proving a Second Welfare Theorem for environments in which Theorem 1 holds are

19An equilibrium with transfers in our setting is a direct extension of Definition 1 in which each consumer has a state-dependent
wealth p(θ)e j (θ)+T j (θ), where T j (θ) ∈R is a transfer that nets out across agents, that is,

∑J
j=1 T j (θ) = 0 for all θ ∈Θ.
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convexity and continuity of preferences and convexity and closedness of production sets. We then have the

following result, the proof of which formally states the exact required notions of convexity and continuity:20

Proposition 6 (Equilibrium Existence and Second Welfare Theorem). Assume that attention costs are in-

variant with respect to Gp ; that reduced preferences are convex and continuous; and that reduced production

sets are convex and closed. Then, an equilibrium exists and any Pareto optimum can be implemented as an

equilibrium with transfers.

By mapping the inattentive economy to a twin attentive economy we make clear that rational inattention

does not pose any new difficulty for existence than that familiar from standard general equilibrium theory,

namely, the possibility of discontinuity in aggregate excess demands due to non-convexities in preferences

and technologies. In fact, one may conjecture that, starting from an attentive but non-convex economy,

the introduction of rational inattention may aid equilibrium existence—and thereby the Second Welfare

Theorem, too—by smoothing out the associated discontinuities in aggregate excess demands.

In Online Appendix D, we show how an inattentive economy with a continuum signal space and pos-

terior separable (Caplin and Dean, 2015) attention costs can satisfy the required continuity and convexity

assumptions. In a nutshell, we observe that posterior separable costs allow agents to replicate lotteries over

allocations at weakly negative cost.

6.2 Fundamental Equilibria and Optimal Attention

Theorem 1 and its proof ignored the question of how inefficiency relates to the presence, or lack, of “non-

fundamental volatility.” Here, we show that these two issues are related but distinct—efficient equilibria can

feature non-fundamental volatility, while a more stringent condition on cognitive costs can rule this out.

We first define notions of the economy-wide fundamental and a group-specific fundamental for each

consumer type or firm. Heuristically, these concepts coarsen the state at the level at which all or some

agents’ preferences, endowments, and technologies are identical. Our specific definition describes one such

coarsening. We next use these concepts to define when equilibria are fundamental and price-tracking.

Definition 8. The economy-wide fundamental is a random variable θ∗ ∈Θ that can be expressed as21

θ∗ ≡ min
{

t ∈Θ s.t. : e j (t ) = e j (θ) and u j (x, t ) = u j (x,θ), ∀ j ∈ {1, . . . , J }, x ∈X ;

and H(y,c, t ) = H(y,c,θ), ∀y ∈Y ,c ∈R+
} (24)

The group-specific fundamental for consumers of type j is a random variable θ j ∈Θ such that θ j ≡ min{t ∈
Θ : u j (x, t ) = u j (x,θ), ∀x ∈X ;e j (t ) = e j (θ)}, and the corresponding object for the firm is a random variable

θF ∈Θ such that θF ≡ min{t ∈Θ : H(y,c, t ) = H(y,c,θ), ∀y ∈Y ,c ∈R+}.

20Naturally, invariance is as essential for our version of the Second Welfare Theorem as it is for our version of the First Welfare
Theorem. It may be possible, though, to prove existence without invariance (and without efficiency) by appropriately adapting
techniques from the general equilibrium literature on analysis with price-dependent preferences. See, for instance, Section III in
Sonnenschein (2017) for an overview of these techniques.

21Our specific coarsening uses the fact that, without loss,Θ can be totally ordered since it is finite.
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Definition 9. An equilibrium is fundamental if x j (θ) = x j∗(θ∗) and y(θ) = y∗(θ∗), for some functions (x j∗)J
j=1

and y∗. An equilibrium is price-tracking if (θ j , p) is a sufficient statistic for (θ, p) with respect to (φ j ,π), for

all j , and similarly (θF , p) is a sufficient statistic for (θ, p) with respect to to (φF ,π).22

In a fundamental equilibrium, allocations cannot depend on sunspots; and in a price-tracking equilib-

rium, agents only pay attention to the objects that enter their payoffs.23

We finally define a monotonicity property of cost functionals:

Definition 10. Fix a set G ⊆ {g : (Θ×RN+ ) → (Θ×RN+ )}. Consider any function g ∈G and any two information

structures (φ,π) and (φ̃, π̃) such that (φ̃, π̃) is the transformation of (φ,π) under g . A cost functional C is

monotone with respect to G if C [φ,π] >C [φ̃, π̃] whenever π̃ is not sufficient for π with respect to φ.

Monotonicity, in words, says that any strict coarsening of the state leads to cognitive savings. Monotonic-

ity is combined with invariance in the characterization of Appendix B, and satisfied by mutual information.

Monotonicity was not satisfied by the example in Section 3.5.

Our result is that full invariance plus monotonicity guarantees that every equilibrium is both fundamen-

tal and price-tracking:

Proposition 7. Assume that all agents’ attention costs are invariant and monotone with respect to the set of

all possible transformations, {g : (Θ×RN+ ) → (Θ×RN+ )}. Then, all equilibria are efficient, fundamental, and

price-tracking.

To prove this result, we first show that monotonicity implies that any efficient allocation is fundamen-

tal. The intuition is that, given monotonicity, eliminating contingency on non-fundamental contingencies

would economize on cognitive costs without harming feasibility. Along with the fact that any equilibrium

is efficient under invariance, this proves that any equilibrium is fundamental under both invariance and

monotonicity. To show the price-tracking property, we finally show that contingency of information strate-

gies on extraneous states would contradict individual, rather than social, optimality under monotonicity.

We note moreover that the conditions of Proposition 7 are a subset of those required for Theorem 1 along

two dimensions: we require monotonicity in addition to invariance, and both properties need to apply for

transformations of both θ and p. For example, if costs specified a preference for perceptual distance as in

Hébert and Woodford (2021) but only with respect to the exogenous state, they may satisfy the conditions

for 1 but not those for Proposition 7.

The argument behind Proposition 7 invites the following intuition for why the invisible hand may ef-

ficiently produce non-fundamental volatility when attention costs satisfy the conditions of Theorem 1 but

not those of Proposition 7. In such circumstances, consumers can enjoy lower attention costs by making

their signals, and thereby also their consumption choices, co-vary with sunspots. This willingness to pay for

22Here, we are using the language from the remarks immediately after Definition 5. This can be translated into the original defi-
nition of sufficiency by applying the function (θ, p) 7→ (θ j , p) for each agent type and describing the associated transformed prior.

23In fact, it is straightforward to strengthen Proposition 7 below to show that, when an agent enjoys utility from only a subset of
the available goods, she only pays attention to the prices of this particular subset as opposed to the entire price vector.
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sunspots manifests in the twin economy’s demand functions for state-contingent goods; prices then adjust

to ensure an efficient allocation.

What if both invariance and monotonicity are violated? This is precisely the scenario captured by the

third example of an inefficient economy in Section 2.4. In such circumstances, the invisible hand may fail

to produce the efficient amount of non-fundamental volatility, and may even yield multiple, Pareto-ranked

equilibria. This possibility represents a form of “cognitive trap” that, unlike the form articulated in Tirole

(2015), does not depend on payoff (or pecuniary) externalities and originates instead from attention costs.

7 Extensions and Open Questions

In this Section, we expand on the meaning of complete markets in our context and on an alternative as-

sumption that lets rational inattention become the source of uninsurable idiosyncratic risk. We next sketch

how one could extend the analysis in two other directions: richer specifications of the cognition state and

of the planner’s options; a more general class of behavioral frictions. We finally comment how our insights

translate from Arrow-Debreu market economies to games.

7.1 The Role of Complete Markets

Our analysis assumed the following “expanded” notion of complete markets: consumers had access to trans-

fers contingent on not only the primitive state of nature θ, but also idiosyncratic signals ω. This assumption

kept our arguments close to classical GE theory and allowed us to reach our version of the First Welfare The-

orem, which linked efficiency to informational invariance. This, in turn, paved the way to our take-home

message: we showed how realistic departures from Sims’s (2003) mutual information specification map to a

novel form inefficiency—what we called “cognitive externalities”—and we used this lesson to shed new light

on the price system’s “economy of knowledge” (Hayek, 1945).

It should be clear that, while Theorem 1 itself relied on the complete-markets assumption, our take-

home message did not: the form of inefficiency that we identified in this paper, and the new angle that we

offered on Hayek’s classic point, naturally extend from complete to incomplete markets.

Moreover, the complete-markets assumption does not imply that inattentive agents make sophisticated

portfolio choices: compared to the case with no attention costs, consumers may suboptimally allocate their

spending not only across goods within a state θ, but also across different realizations of θ. For instance, an

inattentive agent may fail to transfer resources from a state in which consumption is expensive to a state in

which consumption is cheap, precisely because she has difficulty learning, understanding, or responding to

the relevant asset prices (as embedded in the equilibrium variation of p across θ). Put differently, inattentive

consumption choice in our setting captures both “grocery-choice mistakes” and “portfolio-choice mistakes.”

Notwithstanding this point, one may naturally feel uncomfortable with our assumption that markets are

complete with respect to both θ and ω. This amounts to letting consumers enjoy full insurance against the

idiosyncratic noise (i.e., against the variation in ω conditional on θ), which is unrealistic. In the rest of this
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subsection, we therefore zero in on this particular feature of our setting. First, to gauge when our assumption

may or may not be a useful approximation of reality, we provide conditions under which the aforementioned

insurance can be vanishingly small. Next, we discuss how the absence of such insurance opens the door to

pecuniary externalities à la Geanakoplos and Polemarchakis (1986), without however upsetting our own

lessons about cognitive externalities. Finally, we address the subtlety of how inattentive agents meet their

budgets in the absence of the aforementioned insurance.

How Much Insurance is Needed Against Idiosyncratic Mistakes?. To shed some light on this issue, in On-

line Appendix E we write a dynamic variant of our consumer problem which explicitly models how agents

achieve insurance over idiosyncratic mistakes. The consumer faces a repeated, T -period decision problem

under uncertainty about a time-invariant price vector p and state of nature θ. In each period t , a consumer

i chooses their consumption bundle xi t contingent on a concurrent signal ωi t . In addition, the consumer

has access to a “bank account” that helps smooth spending over time. In particular, the consumer’s period-t

expenditure p(θ)xi t (ωi t ) is debit on the bank account and their income P (θ)e(θ) is a credit. It follows that

the final-period balance of the account is given by bi T = b
(
{ωi t }T

t=1,θ
)=∑T

t=1 [P (θ)(e(θ)−xi t (ωi t )]].

In this context, complete markets amounts to assuming that the bank bails out the consumer whenever

bi T < 0, in return of retaining the consumer’s end-of-life savings whenever bi T > 0.24 The required “bail-out”

is non-zero in general, and it could indeed be very large if inattention results in big mistakes.

We show that, if the idiosyncratic noise is uncorrelated over time, then bi T converges almost surely to a

function that depends at most on θ as T →∞. That is, the debits and credits caused by idiosyncratic noise

net out over time, and the required insurance over idiosyncratic mistakes converges to zero with probability

one. Our interpretation is that the complete-markets assumption can be viewed as useful approximation of

reality in the context of small, repeated consumption choices (e.g., weekly grocery shopping), but of course

not in the context of large, once-in-a-lifetime, choices (e.g., education or home purchase).

Allowing for Incomplete Markets. Let us now take seriously the idea that there is no insurance over id-

iosyncratic mistakes. Toward this goal, let us first note that our original, complete-markets consumer prob-

lem in (11) can been rewritten as follows:

max
x,φ,b

∑
ω∈Ω,z∈Zπ

u j (x(ω),θ) φ(ω | z) π(z)−C j [φ,π]

s.t. P (θ) · x(ω)−P (θ) ·e j (θ)−a jΠ(θ) ≤ b(ω,θ), ∀ω ∈Ω,θ ∈Θ∑
ω,θ

b(ω,θ)φ(ω|θ)π(θ) = 0

(25)

This makes explicit the (ω,θ)-contingent transfers, represented above by the function b : Ω×Θ→ R, that

underlie the “consolidated” budget in (11). Removing the “exotic” half of our complete-markets assumption

(i.e., the insurance over mistakes) maps to adding the following constraints to (25): b(ω,θ) = b(ω′,θ) for all

24Note that such a contract does not require the consumer to observe θ at any point. It suffices for the bank to observe θ along
with {ωi t }T

t=1. Although the observability and contractibility of {ωi t }T
t=1 is unrealistic, it is analogous to the standard assumption in

Arrow-Debreu settings that agents can write contracts on idiosyncratic income and taste shocks.
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(ω,ω′,θ). Finally, if we wanted to remove insurance over θ as well, we could further restrict b(ω,θ) = 0 for all

(ω,θ).

A planner that can provide the missing insurance at no cost can trivially improve welfare. More interest-

ingly, suppose that the planner is as constrained as the market, in the sense made precise in Geanakoplos

and Polemarchakis (1986). The planner can still achieve a Pareto improvement by leveraging pecuniary ex-

ternalities: because such externalities do not net out under incomplete markets, and because the planner

can regulate the agents’ exposure to them, the planner can use these externalities to substitute for the miss-

ing insurance. This logic is the same regardless of whether the missing insurance is about θ or ω.

An incomplete markets extension of our analysis would therefore naturally blend the lessons of Geanako-

plos and Polemarchakis (1986) about pecuniary externalities with our own lessons about cognitive external-

ities and Hayek’s economy of knowledge. But it is unclear what additional lesson could obtain at the present

level of generality. Instead, a more fruitful direction for future research might be the exploration of how

incomplete markets and rational inattention interact within specific applications.

Inattention and Budget Constraints. We close this section by discussing how inattentive agents satisfy

their budget constraints despite their perfectly perceiving prices and incomes. This was trivially guaran-

teed in our main analysis thanks to complete markets. But whereas complete markets are sufficient for that

purpose, they are clearly not necessary.

As we remove insurance possibilities in equation 25, we effectively introduce more constraints over the

consumer’s problem. The addition of these constraints naturally reduces payoffs, and also changes optimal

behavior. But the consumer problem remains well-posed: as long as p(θ) > 0 and p(θ) · e(θ) > 0 for all

θ, the choice set for x remains non-empty and compact, so the problem continues to admit a solution. In

other words, there is no logical inconsistency between the following three statements: agents are inattentive;

markets are incomplete; and agents meet their budgets.

The following, however, is also true: while complete markets permit inattentive consumers to exhaust

their resources (i.e., meet their consolidated budget with equality), incomplete markets may force them

to “burn money.” To illustrate, suppose that Θ = {θL ,θH }; that p(θL) = p(θH ) = p̄ > 0 and p̄ · e(θL) < p̄ ·
e(θH ), meaning that prices are the same across the two states and income is lowest in the L state; and that

it is prohibitively costly for the consumer to learn the true state perfectly. Then, consumers can meet their

budget in the L state only by under-consuming enough in the H state.25

Analogous scenarios emerge in more standard incomplete markets models. Consider an (attentive)

agent who dynamically chooses consumption and savings, may die with probability q ∈ (0,1) at any age,

does not have access to annuities, is not allowed to default, and does not have any bequest motives. Simi-

larly to our inattentive agent above, this attentive agent may optimally choose to “burn money,” now in the

form of dying with positive wealth; and once again, the rationale is to avoid a violation of their budget in

certain states. In this sense, the effect of removing complete markets on agents’ ability to meet their budget

25As long as p̄ ·e(θL) > 0, such under-consumption won’t amount to “starvation”. But what if p̄ ·e(θL) = 0? If the disutility of starva-
tion is sufficiently small enough, the consumer may optimally choose starvation along with no information acquisition. Otherwise,
the consumer may opt to learn the state H perfectly, so as to avoid starvation in this state.
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constraints is symmetric in our rational-inattention setting as in a conventional setting.26

Notwithstanding this point, we can also consider a model variant that lets inattentive agents meet their

budgets with equality in all states. We briefly outline the logic here, and analyze the model more thoroughly

in Online Appendix F. We continue to assume that the consumption of goods i = {1, ..., N−1} must be contin-

gent on the signalω, but now assume that the consumption of the last good can be contingent on both θ and

ω. The existence of such an “adjustment” good, common in the applied literature,27 trivializes the question

of how inattentive agents meet their budgets, but does not change the essence of how rational inattention

and incomplete markets blend together. We show in Appendix F that, if utility is concave in xN , then the

absence of insurance translates to pecuniary externalities as in Geanakoplos and Polemarchakis (1986), in

line with our earlier discussion. If, on the other hand, utility is linear in xN , then pecuniary externalities

net out and our cognitive externalities reemerge as the sole possible source of inefficiency. This second sce-

nario maps directly to the example of Section 3 and explains why that example features effectively complete

markets: pecuniary externalities are switched off.

To sum up, the presence or absence of an “adjustment good” does not change the essence of the issue.

The key efficiency property of incomplete markets, with or without rational inattention, is that they open the

door to pecuniary externalities; the key efficiency property of rational inattention, with or without complete

markets, is that it opens the door to the cognitive externalities that are the focus of our main analysis.

7.2 Expanding the Planner’s Options and the Cognition State z

Our notions of feasibility and efficiency in Definitions 2-3 allowed messages to replace prices but did not

give the planner any of the following options: to “customize” messages, sending different messages to dif-

ferent agents; to relabel or merge the underlying states of nature; and to preclude all or some agents from

learning directly about the state of nature. The last option could be interpreted quite literally as the power

to restrict access to information.28 The option to merge states, on the other hand, could represent the plan-

ner’s choice to “uncomplete” the markets—by making agents unable to consume or produce differently in

different state realizations, the planner effectively shuts down agents’ ability to cross-insure between them.

We can readily show an extension of our main result to such an expansion of the planner’s powers, provided

a commensurate enlargement in the assumed invariance of attention costs.

Toward this result, let the planner now manipulate the entire z via a collection of functions Z j : Θ→
Θ×RN+ , one for each type of consumer and firms. Let A all denote the set of all such collections of functions,

26A similar point applies to the question of default, ruled out in our model as in standard Arrow-Debreu. The incorporation of
default in GE theory is a challenging task even in the absence of inattention (see, e.g., Dubey et al., 2005), so it is risky to speculate
about the normative properties of settings that combine default with rational inattention. But it stands to reason that our cognitive
externalities will survive in such setting, and may even take an appealing new flavor: to the extent that default is the product
of inattention, and to the extent that our invariance condition is violated, a regulation of the price system may help minimize
inattentive default in the same way it helps minimize consumption mistakes in our main analysis.

27For instance, this is second-period consumption in Sims (2006) and the y good in Lian (2021). In many other papers, such an
adjustment good is implicit in the assumption that utility is linear in “money” or net wealth (e.g., Colombo et al., 2014; Kőszegi and
Matějka, 2020; Ravid, 2020).

28Under this first interpretation, our upcoming result, showing conditions under which such restrictions are not optimal, relates
also to a literature on information design with inattentive receivers (Lipnowski et al., 2020; Bloedel and Segal, 2021).
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and let the planner choose this collection of functions from a subset A ⊆ A all, which embeds the precise

ways in which the planner may or may not manipulate cognition. Our benchmark model is nested as one

such A that restricts the message space.

Our notions of equilibrium (Definition 1) and efficiency (Definition 3) are unchanged, modulo to the

following two natural adjustments. First, different types of agents are now allowed to have different priors,

henceforth denoted by π j ; and second, consistency of the prior requires π j (z) =∑
θ′ πΘ(θ′) ·1z (Z j (θ′)) for all

z ∈ ImZ j and all j .29 The following version of Theorem 1 then applies provided attention costs are invariant

to the full set of transformations:

Corollary 5. Assume that all consumers and firms have attention costs that are invariant with respect to the

full set of transformations {g : (Θ×RN+ ) → (Θ×RN+ )}. Then, equilibria are efficient with respect to the enlarged

feasibility concept described above.

The only difference from the proof of Theorem 1 is the translation from Proposition 5 to the desired

result. Because the planner can now manage attention not only by replacing prices but also by directly

relabeling the states of nature or compressing them in fewer contingencies, we must invoke invariance with

respect to the entire set of transformations as opposed to the subset Gp .

One can push this argument in a slight different direction as follows. In our main analysis, we defined

the cognition state z as the combination of the state of nature and the price vector. This was motivated

by the sufficiency of (θ, p) to describe each agent’s decision problems in “free markets.” But if we think of

more realistic market structures, augmented with taxation or regulation, policy tools may naturally enter as

additional elements in the agent’s decision problem. This invites a redefinition of the cognition state from

z = (θ, p) to z = (θ, p,τ), where τ is the tax, to formalize how agents may be differentially able to attend

to prices and taxes.30 Alternatively, one could imagine including in z other endogenous objects that may

enter cognition even if they do not directly enter payoffs, like average trades (x j )J
j=1 of each type. In Online

Appendix G, we build the machinery to study economies with such a flexible definition of the cognition

state z and even the potential for the social planner to send messages in a different space. We conjecture

that our main result extends with the appropriately extended notion of invariance—as implied, for example,

by measuring costs by the mutual information between ω and z, regardless of the space of z.

7.3 Alternative Behavioral Frictions

In this subsection, we comment on how our methodology and insights could extend to models of behavioral

frictions other than unrestricted costly information acquisition.

29It is also necessary to redefine the domain of attention costs when priors over z do not have a marginal distribution πΘ on the
first element. In particular, we define the set of mass functions

P ′ ≡
{
π : Im f → [0,1] s.t. π(θ, z) = ∑

θ′∈Θ
πΘ(θ′) ·1z ( f (θ′)) for some f :Θ→Θ×RN+

}
(26)

and require that attention costs are well-defined functions C :∆(Ω)|Θ|×P ′ →R+.
30The behavioral literature on “tax salience” (e.g., Chetty et al., 2009) provides direct evidence that agents behave as if they perceive

the tax component of prices inaccurately.
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Narrow Bracketing and Bounded Recall. Let the signal variable have N components, denoted as ω =
(ωn)N

n=1, and require that xn is measurable inωn for all n. This definesωn as the information set upon which

the consumption of good n must be conditioned on, but does not put any restriction on how correlated this

information may be across n. Our main analysis can be nested by assuming that there is neither a gain nor

a loss, in terms of C , from making ωn have the same information for all n. The scenario often considered

in applied work, where budgets clear via an “adjustment good”, is nested by letting ωn =ω for all n < N and

ωN = (ω,θ). More generally, if we let information sets differ across goods, we can nest the “narrow thinking”

model of Lian (2021) and, by extension, the type of narrow bracketing captured therein. If we interpret the

index of goods as different time periods, then we can capture learning and/or bounded recall.31

There is no obstacle to proving an extension of Theorem 1 that carries the restriction that xn be mea-

surable in ωn . Thus we can accommodate fairly broad notions of asymmetric cognitive constraints across

different goods choices or different time periods without necessarily opening the door to government in-

tervention. In fact, this is possible even in the “vanilla” model from our main analysis. This follows from

combining the results of Kőszegi and Matějka (2020), which show how narrow bracketing can arise as the

optimal solution to multi-dimensional tracking problems with mutual information costs, with our result

that the invariance property of such costs guarantees efficiency.

On the other hand, it may be reasonable to let narrow bracketing arise because of a failure of invariance.

In particular, the core assumption in Lian (2021) is that it is primitively cheaper for ωn to contain informa-

tion about pn than about pr for r ̸= n. This assumption captures the natural idea that “the price of apples is

less salient than the price of bananas when choosing how many bananas to buy, and vice versa.” Similarly, if

bounded recall means it is less costly forωn to contain information about current prices than about the past

ones, then it, too, amounts to a violation of our invariance condition. In such cases, our results suggest that

it may be possible to improve welfare by manipulating the informational content of prices or other endoge-

nous objects that attract people’s attention. Put differently, if “What You See is All There Is” in the phrasing

of Kahneman (2011), a social planner may be motivated to make “What You See” especially informative.

Stochastic Choice. Models of costly information acquisition are nested within the broader class of models

of state-dependent stochastic choice. The converse is not true: there are models of state-dependent stochastic

choice which cannot be micro-founded as models of information acquisition. Such models can directly be

motivated as models of costly control or trembling hands (see, e.g., Morris and Yang, 2022; Flynn and Sastry,

2023). We now illustrate how our results can be extended to these contexts.

For the sake of simplifying the argument, focus on an exchange economy and let the consumption space

X be discrete. 32 Next, let ψ(x|z) ∈∆(X ) denote the probability of consuming x when the cognition state is

z. Keeping with previous notation, we use the shorthand notationψ= (ψ(· | z))z∈Zπ
∈ (∆(X ))|Θ|. Let attention

31Order goods such that lower n corresponds to earlier periods and consider an economy with one “actual” good, consumed over
many periods. Then, learning corresponds to ωn containing more information about z = (θ, p) than ωm for m < n; and bounded
recall corresponds to any scenario in which at least some of the information contained in ωm is not contained in ωn , for m < n.

32Otherwise, we could extend our notation and continuity notion to handle distributions on a continuous commodity space,
similar to what we do in Appendix D for a continuous signal space.
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costs be given by some function K j : (∆(X ))|Θ|×P →R. The consumer’s problem is as follows:

max
ψ

∑
x,z

u j (x,θ) ψ(x | z)π(z)−K j
x [ψ,π]

s.t.
∑
x,z

(p · x −p ·e j (θ)−a jΠ(θ)) ψ(x | z) π(z) ≤ 0
(27)

The definitions of equilibrium, efficiency and invariance are similarly adapted. The arguments in Lemma 1

and hence also Theorem 1 then follow from the same premises. What changes is only the interpretation of

our invariance condition: invariance now refers to whether the costs of random plans of action, as opposed

to signals, are sensitive or not to a specific labeling of the state space.

When cost functionals satisfy Infeasible Perfect Discrimination (IPD) as proposed by Morris and Yang

(2022), which is loosely speaking a notion of “continuous stochastic choice,” invariance is necessarily vi-

olated. Concretely, if the grocery store randomly switches which of two substitutable products are $1.99

versus $2.00, an IPD consumer struggles to shift consumption decisively from one to the other, and a plan-

ner would do better to move those prices further apart. Conversely, the likelihood-separable costs studied by

Flynn and Sastry (2023), which capture trembling hands conditional on observing the state, are invariant in

the required ways. Inattentive economies with such a friction would therefore be efficient as per our results.

Default Points and Sparsity. The control-cost formulation in equation 27 can also capture “default points,”

as studied in a long tradition of behavioral economics (e.g., Tversky and Kahneman, 1991). To illustrate,

suppose that K j
X [ψ,π] were a penalty for picking x away from x j ,d , where x j ,d is a type-specific default point.

The latter could be a deterministic variable that depends on π or a random variable that depends on both z

and p. If the default point depends on the stochastic properties of p, then costs are non-invariant.

Gabaix’s (2014) model of “sparsity” naturally fits in this discussion: that model amounts to a set of as-

sumptions about the default point and the aforementioned penalty. But there is an important difference:

whereas Proposition 8 in Gabaix (2014) compares competitive equilibria to a paternalistic planner that does

not internalize agents’ cognitive costs, our “sparsity-meets-rational-inattention” approach invites one to

take the opposite stance and to reconsider the policy implications of that paper (and of Farhi and Gabaix,

2020). In particular, our approach equates sparsity to a potential failure of invariance: the relevant default

point is connected to the full-attention optimal consumption plan, which itself is endogenous to prices.

From this perspective, the normative properties hinge on the possibility of cognitive externalities.

7.4 Markets vs. Games

Complete, competitive markets can be understood as a special class of games, in which players are infinites-

imal and externalities are muted on equilibrium. This explains why our main insight, regarding the role

of invariance for efficiency, directly extends to the class of continuum-player games studied in Hébert and

La’O (2023). In particular, that paper obtains efficiency under two conditions: invariant attention costs;

and a restriction on the game’s payoffs that is synonymous to efficiency under exogenous information (as in

Angeletos and Pavan, 2007) and that translates to netting-out of pecuniary externalities in our market con-
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text. Put differently, the payoff restriction found in Hébert and La’O (2023) plays exactly the same role as the

complete-markets assumption in our paper, leaving (non)invariance to be the key to (in)efficiency.

By the same token, we expect an extension of our analysis to incomplete markets a la Geanakoplos and

Polemarchakis (1986) to contain similar insights as an extension of Hébert and La’O (2023) to games without

the aforementioned payoff restriction. Both of these extensions are open for future work.

Finally, it is worth clarifying the following, subtler point. Our equilibrium and efficiency concepts specify

the agents’ prior about z and their associated attention choices on equilibrium but not off equilibrium. This

is innocuous here because agents are infinitesimal and off-equilibrium beliefs are immaterial. But this is not

true in settings with large players, where the threat not to pay attention to something off equilibrium could

influence what happens on equilibrium (see, e.g., Ravid, 2020). The applicability of our paper’s logic to such

settings is another open question.

8 Conclusion

Cognitive frictions cause individuals to make mistakes. These can propagate in markets, causing others to

change their behavior and the economy as a whole to malfunction relative to the textbook scenario with

fully rational and attentive agents. But, unless a social planner has the power to “cure” cognitive frictions, it

is not obvious why the planner should try to regulate these mistakes or manipulate market outcomes.

Our main results formalized how rational inattention may or may not lead to inefficiency. If attention

costs are invariant in the sense defined in this paper and markets are complete, then market outcomes are

efficient. If attention costs are not invariant, then market outcomes may be inefficient due to unchecked

cognitive externalities, whereby one’s actions affect the stochastic properties of prices and, in turn, others’

propensity to make mistakes. In such cases, there may be room for policies that manipulate or “simplify” the

stochastic properties of prices or even shut down certain “confusing” markets. Additional results provided

conditions for existence of equilibria, for implementation of Pareto optima, and for equilibrium attention

to be concentrated on “fundamental” objects. We also discussed how to map these lessons to settings with

different market structures, social planning concepts, and underlying cognitive frictions.

Our analysis drew a link between two seemingly disparate issues in information economics: the valid-

ity of Hayek’s (1945) argument about the “economy of knowledge” afforded by the price system was shown

to hinge on the appropriateness of Sims’s (2003) mutual information specification for attention costs. This

reinforces the value of an active decision-theoretic and experimental literature that departs from mutual

information costs within the rational-inattention framework. Such departures offer the promise of under-

standing jointly individual behavior (the focus of that literature) and equilibrium properties including effi-

ciency (the focus of our paper), without either a violation of individual rationality or the implicit invocation

of a paternalistic planner that can cure, bypass, or just ignore people’s cognitive constraints. In particular,

the key to such a non-paternalistic approach is not the measurement of inattention per se, but rather the

identification of what kind of interventions in the price system can ease people’s attention costs. Studying

this in practice is an open area for future research.
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A Omitted Proofs of Main Results

This section completes the proofs of the main results in Sections 4 and 5. Proofs for all other results are in

Online Appendix A.

A.1 Proof of Proposition 5

We prove this by contradiction, following closely the textbook proof in Chapter 16 of Mas-Colell et al. (1995).

Let the competitive equilibrium, which we assume to exist, be denoted by ((x j ,φ j )J
j=1, (y,φF ),P ), and

aggregate demands and production by ((x j (θ))J
j=1, y(θ)). Since we have assumed equilibrium exists, it must

be the case that for each consumer (x j ,φ j ) solves program (17). Let the proposed variant allocation be de-

noted by ((x j ′,φ j ′)J
j=1, (y ′,φF ′),P ), and aggregate demands and production be denoted by ((x j ′(θ))J

j=1, y ′(θ)).

It is without loss to assume that (x j ′,φ) solves (17) for parameters (x j ′(θ))J
j=1 and π. Otherwise we could

construct another feasible allocation with weakly higher payoffs for each agent, and then apply the proof

by contradiction to this variant allocation. Note finally that the message and prior are unchanged from the

price and prior in the equilibrium.
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Assume that, under the variant allocation, all agents are weakly better off and some positive mass of

agents are strictly better off. Under our restriction to symmetry in allocations within types, this implies that

u j ((x j ′(θ))θ∈Θ,π) ≥ u j ((x j (θ))θ∈Θ,π), for all types j , holding strictly for at least one type.

We now establish that
∑
θ P (θ) · x j ′(θ)πΘ(θ) ≥ ∑

θ(P (θ) · e j (θ)+ a jΠ(θ))πΘ(θ) for all agents j , with in-

equality for at least one type. Let us first establish the inequality. Assume instead that
∑
θ P (θ)x j ′(θ)πΘ(θ) <∑

θ(P (θ)e j (θ) + a jΠ(θ))πΘ(θ). In this case, given that P (θ) ∈ RN+ for each θ, there exists an ϵ such that∑
θ(P (θ) ·x j ′(θ))πΘ(θ)+ϵ∑θ(P (θ) ·e)πΘ(θ) <∑

θ(P (θ)e j (θ)+a jΠ(θ))πΘ(θ), where e ∈RN is a vector of ones.

Moreover,

u j ((x j ′(θ)+ϵe)θ∈Θ,π) > u j ((x j ′(θ))θ∈Θ,π) ≥ u j ((x j (θ))θ∈Θ,π) (28)

where the first, strict inequality uses the monotonicity of preferences established in Lemma 2, stated and

proven at the end of this proof.33 Because this bundle is strictly preferred to (x j ,φ j ) and feasible given the

same prices (and profits), its existence would contradict consumer optimality. We use a similar argument to

establish that
∑
θ P (θ)x j ′(θ)πΘ(θ) >∑

θ(P (θ)e j (θ)+a jΠ(θ))πΘ(θ) for agents experiencing a strict utility gain

in the new allocation. If not, x j ′(θ) would be feasible and preferred, contradicting consumer optimality.

Adding up the previously established conditions and simplifying gives

∑
j

∑
θ

(P (θ) · x j ′(θ))πΘ(θ) >∑
j

∑
θ

(P (θ) ·e j (θ)+a jΠ(θ))πΘ(θ)

>∑
j

∑
θ

(P (θ) ·e j (θ))+∑
θ

(P (θ) · y(θ))

>∑
j

∑
θ

(P (θ) ·e j (θ))+∑
θ

(P (θ) · y ′(θ))

(29)

where the second line uses
∑

a j = 1 and Π(θ) = P (θ) · y(θ), and the third line uses the guarantee from profit

maximization that
∑
θ(P (θ) · y(θ)) ≥∑

θ(P (θ) · y ′′(θ)) for any (y ′′(θ))θ∈Θ in F (π) and the assumed feasibility of

(y ′(θ))θ∈Θ. But if the last line is true, then it is a contradiction of feasibility. Therefore the proposed Pareto

dominating allocation cannot exist.

We now complete the argument by stating and proving the required monotonicity of preferences:

Lemma 2. For each type j , each prior π, and each pair x , x ′ ∈ X |Θ|, the following is true: if x ′ ≫ x , then

u j (x ′,π) > u j (x ,π).

Proof. This proof is constructive. Let x and x ′ ≫ x be two consumption vectors in X |Θ|. Necessarily, x

is in the interior of X |Θ|. Let xn(θ) denote consumption of the nth good. Define d ∈ RN+ as the point-wise

minimum increase across states in the aggregate consumption vector or d ≡ (minθ(x ′
n(θ)− xn(θ)))N

n=1. Now

let us take the optimizing values (x,φ) which we assume to exist for program (17) with parameters x and π.

Let dω = (dω
n )N

n=1 = (xmax
n −xn(ω))N

n=1 be the distance to the boundary of X in each dimension; and note that

for any interior x , that the “capped” vector d̃ ≡ (min{dn ,dω
n })N

n=1 also has all strictly positive elements.

Construct x ′(ω) = x(ω)+ d̃(ω) for each ω and note that

33We also use the fact that the original equilibrium allocation was interior to X |Θ| to establish that the proposed deviation lies in
X |Θ|. This was without loss of generality from setting the boundaries of X sufficiently large (see footnote 9).
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∑
ω

x ′(ω)φ(ω | fπ(θ)) ≤ d +∑
ω

x(ω)φ(ω | fπ(θ)) ≤ d +x(θ), ∀θ ∈Θ (30)

where the third statement uses the feasibility constraint in (17). Note that d + x(θ) < x ′(θ) for all θ by con-

struction. Therefore (x ′(ω),φ) is feasible in the variant program with parameters (x ′(θ))θ∈Θ and π.

Observe next that, for a positive measure of ω, x ′(ω) > x(ω).34 Moreover, because x ′(ω) ≫ x(ω) for a

positive measure of ω and u j (·,θ) represents weakly monotone preferences for each θ,

∑
ω,θ

u j (x(ω),θ)φ(ω | fπ(θ))πΘ(θ) < ∑
ω,θ

u j (x ′(ω),θ)φ(ω | fπ(θ))πΘ(θ) (31)

Therefore,
∑
ω,θ u j (x ′(ω),θ)φ(ω | fπ(θ))πΘ(θ)−C [φ,π] > u j (x ,π). Since a maximum exists to program (17)

we know also that

u j (x ′,π) ≥ ∑
ω,θ

u j (x ′(ω),θ)φ(ω | fπ(θ))πΘ(θ)−C [φ,π] (32)

Therefore, u j (x ′,π) > u j (x ,π), which completes the proof. □

A.2 Proof of Theorem 2

Fix an equilibrium. Denote the attention strategy of each agent type in this equilibrium as φ j∗, the price

functional as P∗, and the associated prior as π∗. The assumption that costs are strongly non-invariant in

the sense of Definition 7 guarantees that there exists some transformation g ∈ Gp such that C j [φ j∗,π∗] ≥
C j [φ̃ j∗, π̃∗] for all j , where (φ̃ j∗, π̃∗) is the transformation under g . Moreover, the previous holds with strict

inequality for at least one consumer type j . Let this function g be represented as g (θ, p) = (θ,h(p)).

Consider first the case in which the strict improvement is achieved for some consumer type. The so-

cial planner can implement the original allocation of goods and attention with the new message M(θ) =
h(P∗(θ)). This remains feasible because firms’ production constraint is more slack, or C F [φ̃F∗, π̃∗] ≤C F [φF∗,π∗],

and therefore H(y(ω),C F (φF∗, π̃∗),θ) ≤ 0 for all (ω,θ) such that φ(ω | fπ̃∗(θ)) > 0.35 This new allocation

strictly improves payoffs for at least one consumer type and leaves the payoffs of all other consumers un-

affected. Therefore the equilibrium is Pareto dominated. The economy thus has one Pareto-dominated

equilibrium, and is therefore inefficient by Definition 3.

Consider next the case in which the strict improvement occurs only for the firm. By our assumption of

monotonicity of H , it is now possible for the firm to produce more in all states (ω,θ), and thus on average

produce more in all states θ. Since all agents’ reduced preferences are strictly increasing in x , it is straightfor-

ward to create a new allocation in which some agent type j consumes the extra goods and is strictly better

off. This achieves a Pareto improvement and shows that at least one equilibrium is Pareto dominated.

34If not, then for measure 1 of ω, we have x(ω) = (xmax
n )N

n=1. But this implies x(θ) = (xmax
n )N

n=1 for all θ and there cannot exist an
x′(θ) that is larger in every dimension.

35Note of course that there is no effect on the planner’s ability to make allocations contingent on specific states. Since prices (and
all messages) are deterministic functions of θ, the planner has the same possible contingency for allocations under any message.
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B Invariance in the Space of Posteriors

In this Appendix, we formalize the relationship of our invariance condition with notions of invariance in the

literature on information geometry and the axiomatization of mutual information in Caplin et al. (2022). We

refer the reader to Hébert and La’O (2023) for a complementary, and more detailed, discussion of how the

invariance condition in our paper and theirs alike connects to this literature, as well as to various information

costs proposed in the literature.

We hereafter restrict attention to the class of posterior separable costs, which is studied by Caplin and

Dean (2015) and Denti (2022) and encompasses many specifications used in the literature (e.g., Sims, 2003;

Pomatto et al., 2023; Hébert and Woodford, 2021). With our notation, this class is defined as follows.

Definition 11. Attention costs are posterior separable if they admit the following representation:

C [φ,π] = ∑
ω∈Ω

φω(ω) ·T
[
φz|ω(·|ω);π

]−T [π;π] (33)

where φω(ω) = ∑
z φ(ω | z)π(z) ∀ω, φz|ω(z |ω) = φ(ω|z)π(z)

φω(ω) ∀ω : φω(ω) > 0 (and φz|ω(z |ω) = π(z) otherwise),

and T [·;π] : P →R is strictly convex for each π ∈P .

Loosely speaking, a posterior separable cost functional corresponds the expected increase in a measure

of the difference between the posterior to the prior. A signal structure, represented by its induced posterior

distributions, costs more if it generally induces posteriors that differ from the prior. This makes the speci-

fication of T the key to understanding the economic properties of information costs. We therefore ask how

our notions of invariance and monotonicity of C translate to properties of T.

We now define a notion of invariance for T adapted from the literature on information geometry, which

has recently been applied in economics by Hébert and Woodford (2023, 2021), Hébert and La’O (2023), and

Caplin et al. (2022).36

Definition 12 (Invariance, from Amari and Nagaoka (2000) and Amari (2016)). Let π ∈P and π′ ∈P be two

distributions on Z , fix a g : Z →Z , and construct π̃ and π̃′ as in (15). The functional T satisfies invariance if

T [π′,π] ≥ T [π̃′, π̃] for any g , with equality if and only if the distributions can be written as π(z) = π̃(g (z))r (z)

and π′(z) = π̃′(g (z))r (z) for the same r : Z → [0,1].

When applying this definition to T in the posterior separable cost (33), π and π′ are the prior and poste-

rior about a random variable z, and π̃ and π̃′ are the implied prior and posterior about the random variable

z̃ = g (z). T is invariant if the “difference” between prior and posterior weakly decreases with any such trans-

formation, and remains the same if and only if the prior and posterior completely agree about the realiza-

tions of the state that have been relabeled and/or combined.

The next Lemma verifies that invariant and monotone T in a posterior separable model implies a cost

functional that is invariant and monotone per our definition:

36Most precisely, this is a specialization of the definition from Amari and Nagaoka (2000) and Amari (2016) that imposes that
transformations preserve the state space.
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Lemma 3. Suppose that the cost functional is posterior separable, that T is invariant in the sense of Definition

12, and that T [π;π] = 0 for any π ∈P . Then, the cost functional is invariant and monotone with respect to all

transformations in the sense of Definition 6.

We give the proof in Online Appendix C.8. Most of the argument is algebraic manipulation to show that

the notions of “sufficiency” coincide.

We can use this method to construct invariant cost functionals. Theorem 3.1 in Amari (2016) (p. 54)

demonstrates that the class of divergences defined by

T [π;π′] =∑
z
π(z) · f

(
π′(z)

π(z)

)
(34)

for a differentiable convex f (·) satisfying f (1) = 0 are invariant. When f (u) = − logu, T is the Kullback-

Leibler divergence, which verifies the following:

Corollary 6. Mutual information costs are invariant and monotone in the sense Definition 6.
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Online Appendix for

"Inattentive Economies" by Angeletos and Sastry

C Additional Proofs

Here, we prove the results from Sections 2 (The Main Ideas in a Linear-Quadratic-Gaussian EconomyEcon-

omy), 6 (Additional Results), and 7 (Extensions and Open Questions).

C.1 Proof of Proposition 1

The main logic of the proof is given in the main text. Here, we fill in the calculations.

Consumer Problem. We first derive the optimal coconut demand of an agent conditional on receiving a

signal ω. The following program to maximize over coconut demand, conditional on beliefs for (ω, z)

max
x:R→R

∫ ∫ (
x(ω)− x(ω)2

2
+p(ξ−x(ω))

)
φ(ω|z)π(z) dωdz (35)

is globally concave. The first-order condition for each x(ω) is∫
(1−x(ω)−p)φ(ω | z)π(z) dz = 0 (36)

Rearranging gives

x(ω) = 1−
∫

p
φ(ω | z)π(z)∫

φ(ω | z ′)π(z ′) dz ′ dz = 1−E[p |ω] (37)

where the second equality rewrites the right-hand-side as a conditional expectation.

Next, we specialize this demand function to the relevant case in which: p is Gaussian with mean E[p]

and agents obtain a Gaussian signal of the price with mean p and signal-to-noise ratio ρ. In this case, E[p |
ω] = ρω+ (1−ρ)E[p] and

x(ω) = 1−ρω− (1−ρ)E[p] (38)

We now solve for the price functional. Applying the law of large numbers over realizations of ω, for the

continuum of agents i ∈ [0,1], aggregate demand in state (ξ, p) is the conditional expectation of x(ω) given

(ξ, p). Simplifying,

x̄(ξ, p) =
∫

x(ω)φ(ω | z)dω

=
∫

(1−ρω− (1−ρ)E[p])φ(ω | z)dω

= 1−ρp − (1−ρ)E[p]

(39)

Market clearing requires that x̄(ξ, p) = ξ for all ξ. Substituting in the maintained conjecture that P =ψ0−ψ1ξ,

we obtain

1−ρ(ψ0 −ψ1ξ)− (1−ρ)ψ0 = ξ , ∀ξ (40)
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Taking expectations of both sides, we get 1−ρψ0 − (1−ρ)ψ0 = 0, the unique solution to which is ψ0 = 1.

Substituting this back in and conditioning on ξ ̸= 0, we get ψ1ρξ = ξ, the unique solution to which is ψ1 =
1/ρ. Thus the price functional that clears the market is P (ξ) = 1− ξ

ρ . Under this observation, we can further

simplify individual demand to x(ω) = 1−ρω− (1−ρ) = ρ(1−ω).

We next formulate agents’ reduced-form benefits (equation 4) as a function of the choice variable ρ and

the conjectured price P (ξ) = 1 − ξ
ρe . As preliminary calculations, we observe that E[P (ξ)] = 1, E[P (ξ)2] =(

1
ρe

)2 +1, and E[x(ω)] = 0. We calculate

E[x(ω)2] = E[ρ2(1−ω)2]

= ρ2E[1−2(P (ξ)+a3ηi )+ (P (ξ)+a3ηi )2]

= ρ2(1−2E[P (ξ)]+E[P (ξ)2]+a2
3)

= ρ2
((

1

ρe

)2

+a2
3

)
= ρ2 1

ρ(ρe )2 = ρ

(ρe )2

(41)

where the last line uses the definition ρ = (ρe )−2

(ρe )−2+a2
3

. Finally, we calculate covariance terms E[x(ω)P (ξ)] =
ρE[P (ξ)]−ρE[P (ξ)2] =− ρ

(ρe )2 and E[P (ξ)ξ] =− 1
ρe . Using these expressions, we can simplify

b(ρ,ρe ) = max
x̃

E

[
x̃(ω)− x̃(ω)2

2
+P (ξ)(ξ− x̃(ω))

]
= E[x(ω)]−E

[
x(ω)2

2

]
+E[P (ξ)ξ]−E[x(ω)P (ξ)]

= 0− 1

2

ρ

(ρe )2 − 1

ρe + ρ

(ρe )2

= ρ−2ρe

2(ρe )2

(42)

as claimed in equation 4.

We now return to the signal acquisition problem. Due to the joint Gaussianity of all variables, it is without

loss to focus on signals of the form ωi = p + a3ηi . The signal to noise ratio of this signal, as a function of ρ

and ψ1 =−1/ρe , is

ρ ≡ a−2
3

a−2
3 + (ρe )2

(43)

See that, for any ρe ∈ (0,1], we can set a3 =
(

ρ
1−ρ

)− 1
2 1
ρe to achieve any ρ ∈ (0,1) as claimed. This establishes

the claim that ρe is irrelevant for attention costs written as a function of (ρ,ρe ).

We finally provide a sharper characterization of the equilibrium fixed-point equation

ρe ∈ argmax
ρ

{
b(ρ,ρe )− c(ρ)

}
. (44)

Note that the first-order condition
∂

∂ρ
b(ρe ,ρe ) = c ′(ρe ) (45)
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is necessary and sufficient for equilibrium because b−c is differentiable and strictly concave in (0,1), and the

corners ρ = 0 or ρ = 1 are ruled out by, respectively, c ′(0) = 0 and limρ→1 c ′(ρ) =∞. Existence is guaranteed

by the continuities of x 7→ ∂
∂ρb(x, x) and c ′, and uniqueness by their monotonicity.

Social Planner’s Problem. Let us now consider the social planner’s problem, reprinted here:

max
x,a1,a2,a3,M ,π

∫ ∫ (
x(ω)− x(ω)2

2

)
φ(ω|z)π(z) dωdz −C (a1, a2, a3,π)

s.t.
∫

x(ω)φ(ω | ξ,m) dω= ξ for all (ξ,m)

π(ξ,m) =πΞ(ξ) ·δM(ξ)(m) for all (ξ,m)

(46)

To complete the argument in the main text, we derive the social planner’s objective conditional on a fixed

signal structure of the form ωi = ξ+a3ηi and a fixed message.

First, see that the problem conditional on the signal choice and message is globally concave and char-

acterized by first-order conditions. Let λ̂(ξ) denote the Lagrange multiplier for the first (continuum of) con-

straints and λ(ξ) = λ̂(ξ)
π(ξ) denote the Lagrange multiplier divided by the prior. The first-order condition for the

choice of x(ω), for each ω, is

1−x(ω) =
∫
λ(ξ)φ(ω|z)π(z) dz∫
φ(ω|z)π(z) dz

(47)

We can rewrite the right-hand-side more illustratively as E[λ(ξ) |ω], where the expectation is taken over the

conditional density associated with the joint density φ(ω | z)π(z). We substitute this expression into the

resource constraint to obtain the condition

1−E[E[λ(ξ) |ω] | ξ] = ξ (48)

using the simpler conditional expectation notation for the integral in the constraint. The Gaussianity of

the right-hand-side requires that the left-hand side is also Gaussian. This pins down that the normalized

co-state λ(ξ) must be Gaussian, which also restricts it to be linear in ξ.

Let us then represent λ(ξ) = λ0 +λ1ξ and solve for the undetermined coefficients. Under the assumed

signal structure, we can write out the conditional expectation as

1−λ0 −λ1ρξ= ξ (49)

Matching coefficients such that the previous holds for all realizations of ξ, we recover λ0 = 1 and λ1 = 1/ρ.

We now solve for optimal consumption, which conditional on any signal choice, maximizes the La-

grangian

L =
∫ ∫ (

x(ω)− x(ω)2

2

)
φ(ω|z)π(z) dωdz −

∫
(λ0 +λ1ξ)

(
ξ−

∫
x(ω)φ(ω | ξ,m) dω

)
π(z)dz (50)
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which can be reexpressed using the expectation notation as the following:

E

[
x(ω)− x(ω)2

2
+λ(ξ−x(ω))

]
(51)

Observe that, comparing with the consumer’s program, λ=λ(ξ) = P (ξ) and x(ω) = 1−E[λ(ξ) |ω] = 1−E[P (ξ) |
ω]. This is identical to the consumer’s program, so the same calculations apply to derive the benefits function

modulo the replacement of ρe with ρ. From this point, the analysis follows from the analysis in the main text.

C.2 Proof of Proposition 2

By the same arguments in the proof of Proposition 1, the social planner’s problem can be reduced to choos-

ing a symmetric attention level (ρ) and the message rule’s slope in fundamentals (ψ1) to maximize

W (ρ,ψ1) = b(ρ,ρ)− cPD (ρ,ρ) (52)

where b is defined in equation 4 (and derived in the proof of Proposition 1) and cPD is defined in equation 7.

Substituting in both functions, we write

W (ρ,ψ1) = b(ρ,ρ)− c(ρ;ψ1) =− 1

2ρ
− ρ

1−ρψ
−2
1 (53)

By a similar logic, any equilibrium attention level ρe solves the fixed-point equation

ρe ∈ argmax
ρ

{
ρ−2ρe

2(ρe )2 − ρ

1−ρ (ρe )2
}

(54)

We first show that equilibrium is inefficient. Let ρe ∈ (0,1) be attention obtained in any equilibrium.37 A

sufficient condition for equilibrium efficiency is that the social planner would not want to send a message

with a slope different than 1/ρe (the slope of prices in fundamentals), or

∂

∂ψ1
W (ρ,ψ1)|ρ=ρe ,ψ1=1/ρe = 0 (55)

By direct calculation,

∂

∂ψ1
W (ρ,ψ1)|ρ=ρe ,ψ1=1/ρe =− ∂

∂ψ1
c(ρ;ψ1)|ρ=ρe ,ψ1=1/ρe = 2

ρ

1−ρψ
−3
1 |ρ=ρe ,ψ1=1/ρe = 2

(ρe )4

1−ρe > 0 (56)

The fact that this is nonzero proves that equilibrium is inefficient; the fact that it is positive proves that

the planner strictly prefers to send a message with a higher slope in the fundamental and, hence, a higher

variance compared to the equilibrium, among the class of linear messages.

37Observe that ρe = 0 and ρe = 1 would be inconsistent with optimization, due respectively to infinitely negative benefit and
infinite cost.
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C.3 Proof of Proposition 3

This argument closely follows the structure of the proof of Proposition 2. The social planner’s problem is to

choose (ρ,ψ1) to maximize

W (ρ,ψ1) = b(ρ,ρ)− cV P (ρ;ψ1) =− 1

2ρ
−ρψ2

1 (57)

The planner’s first-order incentive to increase ψ1, evaluated at any equilibrium value ρe for attention (and

corresponding message slope 1/ρe ), is

∂

∂ψ1
W (ρ,ψ1)|ρ=ρe ,ψ1=1/ρe =−2ρe /ρe < 0 (58)

The last inequality follows given ρe > 0, a condition that it is straightforward to verify as necessary for equi-

librium. The fact that this partial derivative is nonzero proves that equilibrium is inefficient; the fact that it

is negative proves that the planner strictly prefers to send a message with a lower slope in the fundamental

and, hence, a lower variance compared to the equilibrium, among the class of linear messages.

C.4 Proof of Proposition 4

Case 1: Mutual Information with (ξ,ν, p). We first prove the first part of the statement, which concerns an

efficient case of the model in which cognitive costs are given by the mutual information of the agent’s signal

ω with the entire vector (ξ,ν, p).

We start by characterizing equilibrium. Conjecture that the price has the form p = P (ξ,ν) = 1+ψ1ξ+ψ2ν

and define Vω = (a1+a2ψ1)2+(a4+a2ψ2)2+a2
3 as the variance of the signal. The agent’s posterior about the

price, conditional on receiving their signal, can be calculated via Bayes’ rule:

E[p |ω] = E[p]+β(ω−E[ω]) = 1+β(ω−a2) (59)

where the signal-to-noise coefficient is

β≡ (a1 +a2ψ1)ψ1 + (a4 +a2ψ2)ψ2

Vω
(60)

The agents’ optimal coconut demand is therefore x(ω) = 1−E[p |ω] =−β(ω−a2).

We next calculate the consumer’s flow utility, excluding information costs, conditional on a given infor-

mation structure and the conjectured price functional. We first observe that E[x(ω)] = 0, E[x(ω)2] = β2Vω,

and E[pξ] =ψ1. We next calculate

E[P (ξ,ν)x(ω)] = E[−β(ω−a2)(1+ψ1ξ+ψ2ν)]

=−β(
a1ψ1E[ξ2]+a4ψ2E[ν2]+a2E[(1+ψ1ξ+ψ2ν)2]−a2

)
=−β(a1ψ1 +a4ψ2 +a2(ψ2

1 +ψ2
2))

=−β2Vω

(61)
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Using these calculations, we write

max
x
E

[
x(ω)− x(ω)2

2
+p(ξ−x(ω))

]
= β2Vω

2
+ψ1 (62)

We now restrict attention to signals that set a2 = 0. This is without loss since the price, in equilibrium, is

affine in the other fundamentals. We specialize the calculations above to write:

β= a1ψ1 +a4ψ2

a2
1 +a2

4 +a2
3

β2Vω = (a1ψ1 +a4ψ2)2

a2
1 +a2

4 +a3
3

(63)

Therefore,

max
x
E

[
x(ω)− x(ω)2

2
+p(ξ−x(ω))

]
= 1

2

(a1ψ1 +a4ψ2)2

a2
1 +a2

4 +a3
3

+ψ1 (64)

We now consider attention costs. The mutual information of ω with (ξ,ν, p), maintaining a2 = 0, is pro-

portional to log
(

a2
3+a2

1+a2
4

a2
3

)
. Hence the cost can be written as

C (a1, a2, a3, a4) = K

(
log

(
a2

3 +a2
1 +a2

4

a2
3

))
(65)

for an increasing and convex K satisfying K ′(0) = 0.

Next, we use market clearing to derive restrictions on the attention strategies and price functional. Mar-

ket clearing requires that

X (ξ,ν) = E[−β(ω−a2) | ξ,ν] =−β(a1ξ+a4ν) = ξ ∀ξ,ν (66)

where the first equality uses the law of large numbers. First, there cannot exist an equilibrium in which

β = 0, as the market would not clear for some realizations of ξ. Second, given this, there cannot exist an

equilibrium in which (almost) all agents choose a4 ̸= 0, as the market would not clear for some realizations

of (ξ,ν). Under these restrictions, and the conjecture that all agents play an attention strategy with non-zero

coefficients (ae
1, ae

3), the restriction −βa1 = 1 yields

ψ1 =− (ae
1)2 + (ae

3)2

(ae
1)2 (67)

Having established an expression for the price functional, we can rewrite the benefits expression equa-

tion 64 as

max
x
E

[
x(ω)− x(ω)2

2
+p(ξ−x(ω))

]
= 1

2

a2
1

a2
1 +a3

3

(
(ae

1)2 + (ae
3)3

(ae
1)2

)2

−
(

(ae
1)2 + (ae

3)2

(ae
1)2

)
(68)

Substituting in ρ = a2
1

a2
1+a3

3
, we write

52



max
x
E

[
x(ω)− x(ω)2

2
+p(ξ−x(ω))

]
= 1

2

ρ

(ρe )2 − 1

ρe = ρ−2ρe

(ρe )2
(69)

Similarly, we observe that the costs are K (− log
(
1−ρ)

). Thus the fixed-point problem describing equilibrium

can be expressed as

ρe ∈ argmax
ρ

(
ρ−2ρe

(ρe )2 −K (− log
(
1−ρ)

)

)
(70)

which is exactly the fixed-point describing equilibrium in equation 5. Thus, any equilibrium in this economy

coincides with an equilibrium to the model studied in Proposition 2.

Let us now consider the social planner’s problem. Observe again the irrelevance of the message, since

(ξ,ν) is necessarily a sufficient statistic for any m = M(ξ,ν). Hence it is without loss to consider the same

mutual information cost described above by (65). If the co-state variable is λ(ξ) = λ0 +λ1ξ, we replicate

the last subsection’s argument that the planner’s optimal consumption plan conditional on the information

structure is x(ω) = 1− E[λ | ω]; and plugging into the constraint establishes that a4 = 0 and λ1 = −1/ρ =
− a2

1+a2
3

a2
1

. The planner’s problem is therefore

(a∗
1 , a∗

3 ) ∈ argmax
a1,a3

(
− 1

2ρ
−K

(− log
(
1−ρ)))

(71)

which is again the planner’s problem from equation 6. Thus, applying Proposition 1, the competitive equi-

librium is efficient.

Case 2: Mutual Information with p. We now prove the second part of the Proposition. This concerns a

model case in which cognitive costs are given by a transformation of the mutual information of the signal ω

with only the price p.

We start with the equilibrium characterization. We continue to assume agents get a signal of the form

ωi = a1ξ+ a2p + a3ηi + a4ν. We make the normalizations a2 = 1 and E[p(ωi − p)] = 0. Both of these are

without loss, under the maintained conjecture that p is affine in ξ and ν.38 We moreover maintain, and later

verify, the conjecture that p = P (ξ,ν) = 1+ψ1ξ+ψ2ν

The restriction implied by the restriction E[p(ωi −p)] = 0 is that

ψ1a1 +ψ2a4 = 0 (72)

Thus, the agent’s signal can load a non-zero amount on ξ andν, conditional on p, and still remain orthogonal

to p, given that the covariances with ξ and ν balance out in this way.

We now describe the agent’s posterior beliefs, information cost, and coconut demand. Define the signal-

38To see the second, consider a signalωi = p+a1ξ+a4ν+a3ηi such that E[p(ωi −p)] ̸= 0. In this case, we haveψ1a1+ψ2a4 = K ̸= 0.

Now consider a new signal ω̃i = p +
a1− K

ψ2
1+ψ2

2
ψ1

1+ K
ψ2

1+ψ2
2

ξ+
a2− K

ψ2
1+ψ2

2
ψ2

1+ K
ψ2

1+ψ2
2

ν+ a3

1+ K
ψ2

1+ψ2
2

ηi . Observe that ω̃i = ωi

1+ K
ψ2

1+ψ2
2

, so it induces the same

posterior beliefs as ωi , and moreover that E[p(ω̃i −p)] = 0.
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to-noise ratio

ρp = ψ2
1 +ψ2

2

ψ2
1 +ψ2

2 + (a2
1 +a2

3 +a2
4)

(73)

The consumer’s beliefs are Ei [p] = ρpωi + (1−ρp ), their the cognitive cost is K (− log
(
1−ρp

)
), and their co-

conut demand is xi (ω) = 1−Ei [p] = ρp (1−ωi ), by direct analogues of the arguments used in Proposition

1.

The market clearing condition is

X (ξ,ν) = E[ρp (1−ωi ) | ξ,ν] =−ρp ((a1 +ψ1)ξ+ (a4 +ψ2)ν) = ξ, ∀ξ,ν (74)

The requirement that the market clear for all realizations of (ξ,ν) yields the following restrictions:

a4 +ψ2 = 0

−ρp (a1 +ψ1) = 1
(75)

or a4 =−ψ2 and a1 =−ψ1 − 1
ρp

.

We now solve for information structures that are consistent with market clearing. We first return to

equation 72 and, substituting in the first expression above, write ψ1a1 −ψ2
2 = 0 or ψ2

2 = ψ1a1. Combining

this with the expression for a1 compatible with market clearing, a1 =−ψ1 − 1
ρp

, we derive the condition

ψ2
2 =−ψ1(ρ−1

p +ψ1) (76)

Next, we rewrite the signal-to-noise ratio as

ρp =
ψ2

1 −ψ1(ρ−1
p +ψ1)

ψ2
1 −2ψ1(ρ−1

p +ψ1)+ (ρ−1
p +ψ1)2 +a2

3

(77)

Rearranging this expression gives the condition

a2
3ρp =ψ2

1 +ψ2
2 −

1

ρp
(78)

Given a value for ρp , equations 76 and 78 are a system of two (non-colinear) equations with three un-

knowns, (ψ1,ψ2, a2
3). These admit a continuum of solutions. In particular, these solutions are indexed by

ψ1 ∈ [−ρ−1
p ,−1] and have

ψ2 =
√

−ψ1(ρ−1
p +ψ1)

a3 = ρ−1
p

√−1−ψ1

(79)

We next derive the fixed-point equation that describes equilibrium. Plugging into the benefits calcula-

tion from equation 62, and using equation 79, we derive that
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b(ρp ;ψ1,ρe
p ) =−ρp

ψ1

2ρe
p
+ψ1 (80)

in terms of the demand-curve slope and the attention paid by others. Thus any pair (ρ,ψ1) that solves

ρ ∈ argmax
ρp

[
−ρp

ψ1

2ρe
p
+ψ1 −K (− log

(
1−ρp

)
)

]
and ψ1 ∈ [−(ρe

p )−1,−1] (81)

is an equilibrium. Since the maximization is strictly concave for any value of ψ1 and the cost function satis-

fies an Inada condition, it suffices to look at the first-order-condition associated with the fixed-point:

− ψ1

2ρp
= c ′(ρp ) (82)

where c ′(x) = K ′(− log(1−x))/(1− x). Let ρp (ψ1) denote the unique solution to the fixed-point above for a

given ψ1 and observe that is a decreasing function.

We next characterize the set of equilibria. Let ρe ∈ (0,1) denote the unique equilibrium level of attention

from Proposition 1; see that (ρe ,−1/ρe ) is a solution to equation 81, as the fixed-point equation is the same

one studied in the proof of Proposition 1. Next, consider any ψ1 < −1/ρe . We have that ρ(ψ1) > ρ(−1/ρe ),

and hence ψ1 < −1/ρe < 1/ρ. Thus there cannot be an equilibrium in which ψ1 < −1/ρe . We next con-

sider any ψ1 ∈ (−1/ρe ,−1]. We have that ρ(ψ1) < ρ(−1/ρe ), and hence ψ1 > −1/ρe > −1/ρ(ψ1). Thus each

(ρ(ψ1),ψ1), for ψ1 ∈ (−1/ρe ,−1], is an equilibrium. In all of these equilibria, equation 79 implies that ψ2 ̸= 0,

and hence prices are not independent from ν.

We finally observe that, evaluated in equilibrium, the payoffs in Equation 81 are strictly increasing in

ψ1 and strictly decreasing in ρp . Therefore, the worst equilibrium corresponds to equilibrium in which ρp

is maximized and ψ1 is minimized, which corresponds to the equilibrium of Proposition 1 based on the

arguments above.

Additional Remarks. Having proven both parts of the Proposition, we conclude some additional remarks

about the structure of equilibrium multiplicity in Part 2.

Note that the equilibrium of ψ1 =−1 implies that a3 = 0 and ψ2 =
√
ρ−1

p −1. In this case, ω∝ ξ and the

agent can obtain the first-best. This works with respect to cognitive constraints because the price is suffi-

ciently contaminated with noise that “precise” observation of ξ corresponds with “imprecise” observation

of p. This can be understood also as a cognitive externality whereby changing the dependence of prices on

ν affects the cost of obtaining a fixed posterior about the fundamental ξ.

Moreover, the equilibria are Pareto-ranked: welfare (the consumer’s ex ante utility) is strictly higher in

the equilibria with “more public noise,” or lower |ψ1|, for a fixed ρp . We can thus interpret equilibria with less

noise in prices as “cognitive traps,” where agents fail to correlate their information/inattention in a welfare-

improving manner. This reminds the cognitive traps articulated in Tirole (2015). But whereas that particular

form of cognitive traps depends on pecuniary or payoff externalities (equivalently, on some inefficiency in

the underlying, attentive economy), ours does not: it originates exclusively in the specification of attention
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costs and, in particular, on the joint violation of invariance and monotonicity (as established by Theorem 1

and Proposition 7).

Finally, see that any equilibrium in which ψ1 ̸= 0 (i.e., p varies even slightly with ξ) is dominated by the

social planner’s allocation in which m = M(ξ,ν) = ν, ωi = ξ, and xi =ωi . This yields the first-best allocation

without any costs of learning, as the mutual information of ωi with m is 0. This embodies the most extreme

possible exploitation of the endogeneity of the price or message and the associated cognitive externality.

C.5 Proof of Proposition 6

In the statement of the result, we refer to “convex and continuous preferences” and “convex and closed

production sets” in the following sense:

Definition 13. Reduced preferences are convex if, for every π, for every pair x , x ′ ∈X |Θ| such that u j (x ,π) <
u j (x ′,π) and every α ∈ (0,1), we have u j (αx + (1−α)x ,π) >αu j (x ,π)+ (1−α)u j (x ′,π). They are continuous

if, for every π, u j (x ,π) is continuous for every π.

Definition 14. Reduced production sets are convex if, for every π, every pair y , y ′ ∈ F (π), and everyα ∈ (0,1),

αy + (1−α)y ′ ∈ F (π). They are closed if, for every π and every convergent sequence {y k }∞k=1 with y k ∈ F (π)

for all k, limk→∞ y k ∈ F (π).

Equilibrium Existence

Since an equilibrium in the twin economy trivially maps to an equilibrium in the original economy, it is

sufficient to prove to prove existence in the twin economy.

We first prove existence of equilibrium in an economy in which all preferences and production sets are

conditioned on the “message” M(θ) = p for some arbitrary p ∈ RN+ . Let πp denote the associated prior. We

now map our analysis to the setting of Arrow and Debreu (1954) and verify conditions I-IV in that article

when preferences for each type j are represented by u j (·,πp ) and the production set is F (πp ). Condition

Ia, which requires closed and convex production sets, is assumed in our setting. Ib and Ic, which restrict

pathological outcomes like purely positive production plans, are implied by the assumed monotonicity of H

and the normalization for a shut-down production of 0 is possible in any state of the world, at any cognitive

cost. Condition II, that the consumption set X is bounded from above and below, is implied by taking X is a

closed rectangle in the first quadrant. Condition III requires first that the utility function is continuous (IIIa)

and convex in the sense of Definition 13.2 (IIIc). As stated it requires also the lack of a satiation point, but it

is immediate (and remarked upon by the authors) that this can be replaced by there not existing a satiation

point that is consistent with feasibility; and this latter point is implied by our assumption in footnote 9.

Assumption IV requires that consumers hold positive claims on the firms, summing to one, and endowments

bounded above by some element of X . These are part of our environment.

Theorem I in Arrow and Debreu (1954) guarantees the existence of a competitive equilibrium under the
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stated assumptions. In particular, this equilibrium is supported by some P :Θ→RN+ .39

Observe finally, from Section 3.5, that under invariance within Gp , preferences and production sets are

unchanged conditional on any π of the form π(z) = πΘ(θ) ·1 f (θ)(p) for any f : Θ→ RN+ . More precisely, we

can apply Lemma 1 to show u j (·,πp ) = u j (·,πP ), where πP is the prior induced by the price functional P (·);

and F (πp ) = F (πP ). It is trivial then to show that we have obtained an equilibrium of the economy in which

preferences for each type j are represented by u j (·,πP ) and the production set is F (πP ).

Second Welfare Theorem

The implementation of an equilibrium with transfers, and the notion of a Pareto optimum, are trivially

equivalent between the inattentive economy and its attentive twin. It is therefore sufficient to prove the

result in the twin economy.

Consider, then, a Pareto optimum in the twin economy that can be written as (x j (θ))θ∈Θ, for each j , and

implemented with message m = M(θ). Let πM be the induced prior over θ×RN+ . We now use Theorem 2 in

Debreu (1954) to verify the existence of a price vector that supports such an equilibrium, when preferences

and production sets are conditioned on πM . To do so we verify conditions (I) to (V) in that article. Condition

I is that X is convex, which is assumed. Condition II is convexity of preferences as stated in the main text.

Condition III requires, for every x, x ′, x ′′ ∈ X |Θ| and agent j , that {α : u j ((1−α)x ′+αx ′′,π) ≥ u j (x,π)} and

{α : u j ((1−α)x ′+αx ′′,π)] ≤ u j (x,π)} are closed subsets of [0,1].40 See that this is a trivial consequence of

the assumed continuity in the utility function in X |Θ|. Condition IV is the convexity of the production set,

which is trivial in the endowment economy. And Condition V is that X |Θ| is finite dimensional, guaranteed

by the finite state space.

Theorem 2 in Debreu (1954) guarantees the existence of a price function P :Θ→RN+ such that41

u j ((x ′(θ))θ∈Θ,πM ) ≥ u j ((x j (θ))θ∈Θ,πM ) =⇒ ∑
θ

πΘ(θ)P (θ) · x ′(θ) ≥∑
θ

πΘ(θ)P (θ) · x j (θ) (83)

This implies that (x j (θ))θ∈Θ solves program 18 when the price functional is given by P (·), the utility function

by u j ((x ′(θ))θ∈Θ,πM ), and income by
∑
θπΘ(θ)P (θ) · x j (θ). See that this equilibrium can be implemented

with transfers T j (θ) = P (θ) · (x j (θ)−e j (θ)) for each θ.

We finally argue that the given allocation is a price equilibrium with transfers. To do this, we apply

invariance (Lemma 1) to show u j (·,πM ) = û j (·,πΘ) = u j (·,πP ), where πP is the prior induced by the price

functional P (·); and F (πM ) = F̂ (πΘ) = F (πP ). Thus we have shown how to implement the Pareto optimum as

a price equilibrium with transfers as desired.

39As written, Theorem I in Arrow and Debreu (1954) guarantees the existence of a vector of state-contingent prices p ∈RN |Θ|
+ , but

this is readily transformed to the price functional under the maintained assumption that πΘ(θ) > 0 for all states.
40This already employs two simplifications relative to the article, using the compactness of X to use the whole interval [0,1]

inclusive of endpoints and the existence of a utility representation of preferences.
41As written, the theorem guarantees the existence of a vector of state-contingent prices p ∈RN |Θ|

+ , but this is readily transformed
to the price functional under the maintained assumption that πΘ(θ) > 0 for all states.
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C.6 Proof of Proposition 7

An intermediate result, which we state and prove before the main proof of Proposition 7, shows the con-

sumer’s strict preference for, and the firm’s ability to produce, bundles that average over states of nature

that are irrelevant to preferences, endowments and technologies. Define for each consumer type j the set

of functions W j ⊆ {w : Θ→ Θ} that do not separate any two states corresponding to the same payoffs and

do not alter prices. That is, w(θ) = w(θ′) =⇒ u j (x,θ) = u j (x,θ′), ∀x ∈ X . For firms we similarly define

the transformations that keep intact the state-dependent component of the feasibility constraint: W F in-

cludes all functions such that w(θ) = w(θ′) =⇒ H(y,c,θ) = H(y,c,θ′), ∀y ∈ Y . The intermediate result is

the following:

Lemma 4. Let attention costs be invariant and monotone with respect to all transformations {g : (Θ×RN+ ) →
(Θ×RN+ )}. The following properties hold:

1. Fix a (x(θ))θ and a w ∈W j , and construct (x ′(θ))θ such that

x ′(θ) =
∑
θ′ x(θ′)πΘ(θ′)1θ(w(θ′))∑

θ′ πΘ(θ′)1θ(w(θ′))
(84)

for each θ ∈Θ. Then u j ((x ′(θ))θ,π) ≥ u j ((x(θ))θ,π) with equality if and only if x(θ) = x ′(θ) for all θ.

2. Fix a (y(θ))θ ∈ F (π) and a w ∈W F , and construct (y ′(θ))θ such that

y ′(θ) =
∑
θ′ y(θ′)πΘ(θ′)1θ(w(θ′))∑

θ′ πΘ(θ′)1θ(w(θ′))
(85)

for each θ ∈Θ. Then (y ′(θ))θ ∈ F (π).

Proof. We start with part 1. Let us denote by (x,φ) and (x ′,φ′) any selection of the solutions to the program

(17) corresponding respectively to the parameters (x(θ))θ and (x ′(θ))θ. See that x(θ) ̸= x ′(θ) for at least one

θ ∈Θ implies that
∑

p φ(ω | θ, p) ̸=∑
p φ(ω | θ′, p) for at least some pair some (θ,θ′) such that w(θ) = w(θ′).

Let us now construct a lower bound for u j ((x ′(θ))θ,π). To do this, we define a transformation as in Defi-

nition 4, for some g = (θ, p) 7→ (w(θ), p) for some p ∈RN+ , which defines φ′′ and π′′. We then define the signal

structure function (φ′′′,π) such that, for all ω, z,

φ′′′(ω | z) =φ′′(ω | g (z)) (86)

We then propose the allocation (x,φ′′′) in program (17) corresponding to the parameters ((x ′(θ))θ. See
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that expected utility for the agent is the same under the proposed allocation and under (x,φ):

∑
ω,θ

u j (x(ω),θ) φ(ω | fπ(θ))πΘ(θ) = ∑
ω,θ

∑
θ′

u j (x(ω),θ′)φ(ω | fπ(θ′)) πΘ(θ′) 1θ(w(θ′))

= ∑
ω,θ

u j (x(ω),θ)
∑
θ′
φ(ω | fπ(θ′)) πΘ(θ′) 1θ(w(θ′))

= ∑
ω,θ

u j (x(ω),θ) φ′′′(ω | fπ(θ)) πΘ(θ)

where the first line rewrites the sum; the second uses the definition of W j and in particular that u(·,θ) =
u(·,θ′) whenever w(θ′) = w(θ); and the third substitutes the definition of φ′′′.

We will next show the cognitive cost is strictly lower under the proposed signal technology than under

the technology described by φ. See first that C [φ′′,π′′] <C [φ,π], by monotonicity of the cost function, since

g ⊂; and, second, that C [φ′′′,π] = C [φ′′,π′′] by informational invariance, as (86) immediately implies the

sufficiency relationship. Therefore, C [φ′′′,π] <C [φ,π]. Putting this together with the previous observation,

∑
ω,θ

u j (x(ω),θ) φ′′′(ω | fπ′′′(θ)) πΘ(θ)−C [φ′′′,π] > u j ((x(θ))θ,π) (87)

Observe now that the allocation (x,φ′′′) is feasible in program (17) with parameter (x ′(θ))θ by the following

direct calculation for each state θ ∈Θ:

∑
ω

x(ω) φ′′′(ω | fπ(θ)) =∑
ω

x(ω)

∑
θ′φ(ω | fπ(θ′)) ·πΘ(θ′) ·1θ(w(θ′))∑

θ′′ πΘ(θ′′) ·1w(θ′)(w(θ′′))

=∑
θ′

πΘ(θ)∑
θ′′ πΘ(θ′′)1θ(w(θ′′))

∑
ω

x(ω) φ(ω | fπ(θ′)) πΘ(θ′)

≤∑
θ′

x(θ′)
πΘ(θ′)1θ(w(θ′))∑
θ′′ πΘ(θ′′)1θ(w(θ′′))

= x ′(θ)

(88)

where the first line uses the definition of φ′′′; the second rearranges terms; and the third uses the feasibility

of the original strategy (x,φ) in each state of the world.

Since (x,φ′′′), is feasible, and u j ((x ′(θ))θ,π) is the maximized value of the program, we must have

u j ((x ′(θ))θ,π) ≥ ∑
ω,θ

u j (x(ω),θ) φ′′′(ω | fπ(θ)) πΘ(θ)−C [φ′′′,π] (89)

This combined with (87) gives u j ((x ′(θ))θ,π) > u j ((x(θ))θ,π) as desired.

We now establish the second part of the result, for firms. Let (y,φ) denote the original production plan

that exists, satisfies the constraints in (19), and satisfies

∑
ω

y(ω)φ(ω | fπ(θ)) = y(θ), ∀θ ∈Θ (90)

construct φ′′, φ′′′ and π′′ just as above, via the change of variables associated with g = (θ, p) 7→ (w(θ), p). By

an analogue of the same argument used for consumers, C [φ′′′,π] <C [φ,π]. We now consider the production

59



constraints. See that a necessary condition for φ′′′(ω | fπ(θ)) > 0 is that φ(ω | fπ(θ′)) > 0 for some θ′ such that

w(θ′) = w(θ). Feasibility of the original allocation plan implies that

H
(
y(ω),C F [φ,π],θ′

)≤ 0 (91)

The definition of W F implies that H(y(ω),c,θ′) = H(y(ω),c,θ). Moreover, monotonicity of the production

possibilities function in its second argument means that H(y(ω),c ′,θ′) < H(y(ω),c,θ′) for any c ′ < c. Putting

this together with the strict inequality for costs gives

H(y(ω),C F [φ′′′,π],θ) < H(y(ω),C F [φ,π],θ) = H(y(ω),C F [φ,π],θ′) ≤ 0 (92)

so production satisfies the technological constraint. Finally a calculation identical to (88) shows that

∑
ω

y(ω)φ′′′(ω | fπ(θ)) =
∑
θ′ y(θ′)πΘ(θ′)1θ(w(θ′))∑

θ′ πΘ(θ′)1θ(w(θ′))
= y ′(θ) (93)

for all θ ∈Θ. Therefore (y ′(θ))θ∈Θ ∈ F [π] as desired. □

Proof. We now prove Proposition 7. Throughout the proof, we use the notation θ∗ =Q(θ), θ j =Q j (θ), and

θF = QF (θ) to describe the constructions of Definition 8 via the respective transformations Q : Θ→ Θ and

{Qx :Θ→Θ,∀x ∈ {1, . . . , J }∪ {F }}.

The claim that the equilibrium is efficient follows from Theorem 1, and the observation that costs’ in-

variance and monotonicity with respect to all transformations implies their invariance with respect to the

subset of transformations Gp .

We now prove claim 2, that the equilibrium is price-tracking, by contradiction. Assume otherwise. Imag-

ine first that there is at least one consumer type j such that Q j (θ) is not a sufficient statistic for θ. Apply the

construction in the proof of Lemma 4 with respect to w(θ) =Q j (θ) to generate a new information structure

(φ j ′,π′) and consumer bundle (x j ,φ j ′).42 See that, because we have assumed that Q j (θ) is not a sufficient

statistic for θ in the conditional density, this transformation produces a strict improvement in payoffs. Ad-

ditionally, under the construction, we have φ j ′(ω | θ, p) = φ j ′(ω | Q(θ), p) which implies that (Q(θ), p) is

sufficient for (θ, p).43

See next that the new bundle is feasible. By the following elementary calculation, which uses the law of

42Specifically, φ j ′(ω | z) =φ′′′(ω | z) where the right-hand-side is in the Lemma’s terminology.
43To translate to Definition 5, we would state this as a property of π′ defined by (15) with g (θ, p) = (Q(θ), p), with respect to π.

60



large numbers, the new bundle has the same cost as the original bundle

∑
ω,z

(x j (ω) ·p)φ j (ω | θ, p)π(θ, p) =∑
p

p ·
(∑
ω

x j (ω)
∑
θ

φ j (ω | θ, p)π(θ, p)

)

=∑
p

p ·
(∑
ω

x j (ω)
∑
θ

φ j ′(ω | θ, p)π(θ, p)

)
= ∑
ω,z

(x j (ω) ·p)φ j ′(ω | θ, p)π(θ, p)

(94)

Therefore the feasibility of the original bundle implies the feasibility of the new one. The existence of a

feasible bundle with strictly higher payoffs contradicts consumer optimality, as we have found something

that is higher payoff and feasible. So the proposed equilibrium cannot exist.

Imagine next that, for the firms, QF (θ) is not a sufficient statistic for θ. Apply the construction in the

proof of Lemma 4 with respect to w(θ) = QF (θ) to generate a new production bundle (y,φ′). Observe that,

according to (92), there is strict slack in the production constraint or

H(y(ω),C F [φ′,π],θ) < 0 (95)

in allω,θ such thatφ′(ω | fπ(θ)) > 0. Because H is continuous and strictly increasing in its first N arguments,

there exists an ϵ> 0 such that

H(y(ω)+ϵe,C F [φ′,π],θ) < 0 (96)

where e is an N × 1 vector of ones. Hence (in some abuse of notation) the production plan (y + ϵe,φ′) is

also feasible.44 Producing this plan increases profits by ϵ(p · e) > 0. Hence the existence of this deviation

contradicts profit maximization. So the proposed equilibrium cannot exist.

We now prove claim 3 of the result, that equilibrium is fundamental. Assume, by contradiction, that

there exists a non-fundamental equilibrium. Since invariance and monotonicity with respect to all transfor-

mations implies invariance with respect to Gp , the equilibrium is not Pareto dominated by any allocation

supported by an arbitrary message (Theorem 1).

We now show a contradiction to Pareto optimality: the social planner could remove the non-fundamental

contingency in the allocation to achieve a Pareto improvement. We start by showing that at least one con-

sumer conditions their aggregate demand or production on the non-fundamental state in the equilibrium.

Assume not. The market clearing condition is

J∑
j=1

µ j x j (θ) =
J∑

j=1
µ j e j (θ)+ y(θ) (97)

for all θ ∈Θ. Take any two states θ,θ′ such that Q(θ) =Q(θ′). Under the conjecture,
∑J

j=1µ
j x j (θ)−∑

µ j e j (θ) =∑J
j=1µ

j x j (θ′)−∑
µ j e j (θ′). But this violates the implication of market clearing that y(θ) ̸= y(θ′). Therefore at

44For simplicity, we ignore the issue of y(ω)+ ϵe ∉ Y for some ω. To “fix” this, we would apply the exact same reasoning as in
the proof of Lemma 2: we can restrict attention away from allocations at a “corner” of Y by making that set sufficiently large, and
otherwise construct our deviation to increase y(ω) only on the (necessarily positive measure subset) of ω in which it is possible.
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least one consumer type conditions on non-fundamental volatility.

We now propose the following allocation. For each consumer, set the allocation constructed in the proof

of Lemma 4 using w(θ) =Q(θ), which is by construction in W j for each type j . For each producer, also set the

allocation constructed in the proof of Lemma 4 using w(θ) =Q(θ), which is by construction in W F . Lemma 4

guarantees this allocation is strictly preferred by at least one agent type, whose allocation has changed, and

is weakly preferred by all others.

We finally show that it is resource feasible. The feasibility constraint for state θ is

J∑
j=1

µ j x j ′(θ) ≤
J∑

j=1
µ j e j (θ)+ y ′(θ) (98)

which is, using the law of large numbers,

J∑
j=1

µ j

∑
θ′ x j (θ′) ·πΘ(θ′) ·1Q(θ)(Q(θ′))∑

θ′ πΘ(θ′) ·1Q(θ)(Q(θ′))
≤

J∑
j=1

µ j e j (θ)+
∑
θ′ y(θ′) ·πΘ(θ′) ·1Q(θ)(Q(θ′))∑

θ′ πΘ(θ′) ·1Q(θ)(Q(θ′))
(99)

Next see that, because e j (θ) = e j (θ′) for all θ,θ′ : Q(θ) =Q(θ′), we can write

e j (θ) =
∑
θ′ e j (θ′) ·πΘ(θ′) ·1Q(θ)(Q(θ′))∑

θ′ πΘ(θ′) ·1Q(θ)(Q(θ′))
(100)

But we know from the feasibility of the original allocation that, for all θ′,

J∑
j=1

µ j x j (θ′) ≤
J∑

j=1
µ j e j (θ′)+ y(θ′) (101)

Multiplying both sides by 1Q(θ)(Q(θ′)) ·πΘ(θ′), then dividing by
∑
θ′ πΘ(θ′) ·1Q(θ)(Q(θ′)), gives (99).

Therefore we have shown the existence of a feasible allocation that Pareto dominates the original alloca-

tion. This is a contradiction. Therefore there cannot exist a non-fundamental equilibrium. □

C.7 Proof of Corollary 5

We proceed in the following two steps. Consider any possible Pareto-dominating allocation. If the proposed

message M(θ) is invertible in θ, then a twin of the argument from the proof of Theorem 1 shows it must be

feasible and payoff-equivalent with the message (θ,P (θ)) and therefore cannot Pareto dominate the equilib-

rium. In particular, we can apply a map M(θ) 7→ (θ,P (θ)) and use the full invariance condition to prove an

equivalent of Lemma 1.

If the proposed message is not invertible in θ, we claim (and prove at the end of this section) that a

payoff-equivalent arrangement is possible with the message (θ,P (θ)). Therefore, were a Pareto-dominating

allocation to exist with message M(θ) , our construction has provided a Pareto-dominating allocation with

message (θ,P (θ)) and contradicted the result of Proposition 5.
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We now prove the intermediate step. Denote the consumer choices in the proposed arrangement via

x j ,φ j for each type j ; and the proposed prior distribution, compatible with the message M , by πM . Let us

now construct the signal structure with likelihood distributions

φ
j
P (ω | θ,P (θ)) =φ j (ω | fπM (θ)) ∀ω ∈Ω (102)

and the prior distribution

πP (θ,P (θ)) =πΘ(θ) (103)

This new construction in particular “un-coarsens” and relabels the state space, maintaining the assumption

that agents do not distinguish between the previously coarsened states of nature . See that (φ j ,πM ) is a

transformation of (φ j
P ,πP ) for a mapping (θ,P (θ)) 7→ M(θ) which is in . Moreover, under this mapping, πM

is sufficient with respect to πP with respect to φ
j
P in the sense of Definition 5. Therefore, by invariance,

C [φ j ,πM ] = C [φ j
P ,πP ]. Next, see that the consumer payoffs from program (11) are trivially the same under

both information structures when the consumption strategy is fixed at x j ; and aggregate demands x j (θ)

conditional on any θ are also the same. We then can replicate this argument for each consumer type j .

We next turn to feasibility. We use a similar constructive argument to define a new attention strategy that

is valid under πP and leads to the same costs. The feasibility constraint is similarly unaltered. Thus, with this

new arrangement, the planner can generate the same aggregate supply y(θ).

Therefore, we have constructed a new feasible arrangement that results in the same payoffs for each

agent in the economy. This ends the proof.

C.8 Proof of Lemma 3

Consider an original information structure (φ,π) and its transformation (φ̃, π̃), by some g . The cost of

the original distribution can be written using the definition of a posterior separable cost (33) as C [φ,π] =∑
ω∈Ωφω(ω) ·T

[
φz|ω;π

]−T [π;π]. Now consider the transformation. We use the invariance of the marginal

on ω and the normalization T [π,π] = 0 to write C [φ,π] = ∑
ω∈Ω φ̃ω(ω) ·T

[
φz|ω;π

]
and then note that, for

each ω, T
[
φz|ω;π

]≤ T
[
φ̃z|ω; π̃

]
with equality if and only if g (z) is a sufficient statistic for z in each posterior

distribution. Therefore,

C [φ,π] = ∑
ω∈Ω

φ̃ω(ω) ·T
[
φz|ω;π

]≤ ∑
ω∈Ω

φ̃ω(ω) ·T
[
φ̃z|ω; π̃

]=C [φ̃, π̃] (104)

with strict inequality if and only if sufficiency from Definition 5 implies sufficiency from Definition 12. Under

this claim, C is monotone and invariant in the sense of Definition 6.

It remains to verify the claim about sufficiency. Using the construction of Definition 6 and Bayes’ rule,

the posterior distributions are
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φ̃z|ω(z |ω) =
∑

z ′∈Z φω|z ′(ω | z ′) ·π(z ′) ·1z (g (z ′))

φ̃ω(ω)
= ∑

z ′∈Z

φω|z ′(ω | z ′)π(z ′)
φ̃ω(ω)

·1z (g (z ′)) (105)

See that the marginal distribution over ω is unchanged, or φ̃ω(ω) = φω(ω). Thus the first term of (105) is

φz|ω(z |ω), and so

φ̃z|ω(z |ω) = ∑
z ′∈Z

φz|ω(z |ω) ·1z (g (z ′)) (106)

This expression and the construction for the prior in Definition 6 therefore both fit the construction of π̃ and

π̃′ in Lemma 3, with π=φz|ω; π′ =π; π̃= φ̃z|ω; π̃′ = π̃. We now show the equivalence of the sufficient statistic

expressions. Starting with the expression in Definition 6, φω|z (ω | z) = φ̃ω|z (ω | g (z)) for all ω and z, we use

the definition of the construction to write and simplify

φz|ω(z |ω) = φ̃ω|z (ω | g (z))π(z)

φω(ω)
= φ̃ω|z (ω | g (z))π̃(g (z))

φ̃ω(ω)
· π(z)

˜π(g (z))
= φ̃z|ω(g (z) |ω) · π(z)

π̃(g (z))
(107)

Set r (z) = π(z)
π̃(g (z)) . See that π̃(g (z)) ≥π(z) and therefore r (z) ∈ [0,1], with the natural extension that r (z) = 0 if

π̃(g (z)) = 0. Moreover it is trivial that π(z) = π̃(g (z)) · r (z).

D Sufficient Conditions for Convex and Continuous Inattentive Economies

In this appendix, we return to the question of how the assumptions on the reduced preferences and tech-

nologies invoked in Proposition 6 translate in terms of primitives. Continuity and closedness follow from

the appropriate notions of continuity on the primitives and application of Berge’s Theorem. Convexity, on

the other hand, is related to the question of whether agents can costlessly randomize over consumption and

production plans. To use language familiar from general equilibrium theory, the key question is whether the

optimal design of a noisy signal can subsume the use of lotteries over bundles of goods. Here, we describe a

variation of our model economy in which the such convexity is attained.

Set-up. In contrast to our main analysis with a discrete signal space, in this Appendix we consider a model

with signal spaceΩ= [0,1]. Define LΩ,X (ℓ) in our context as the set of Lipschitz-continuous functions from

Ω to X with constant ℓ, equipped with the sup norm; and LΩ,Y (ℓ) the equivalent subset of functions map-

ping Ω to Y .45 Next, let B(Ω) denote the set of all probability measures defined on Ω (equipped with the

Borel σ-algebra), and equip B(Ω) with the standard weak topology.46 We represent such probability mea-

sures by cumulative distribution functions Φ ∈ B(Ω). We redefine the domain of the each agent’s cost func-

tional as (B(Ω))|Θ|×P , where P still carries its definition from Section 3.1. The richness of the state space

will assist in proving convexity of preferences, as we will see soon.

45This restriction is technical and, we conjecture, not particularly restrictive given the richness of the signal space.
46Let each measure in B(Ω) be associated with a cumulative distribution function F . A sequence of measures corresponds to

a limit measure if the corresponding sequence of cumulative distribution functions Fn converge at all points of continuity to the
corresponding limit measure’s cumulative distribution, F .
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We next specialize production by assuming that technology can be written as H(y,c,θ) = H̃(y + c · v,θ),

for a vector v ∈ RN+ and a function H̃ : RN ×Θ→ R. This assumption is not trivial but easy to motivate: it

nests the special case in which attention is “paid for” in the unit of a specific good (the vector v has a single

non-zero element) and therefore enters as an additive penalty in profits denominated in the price of that

good. As noted earlier, this is the case invariably assumed in macroeconomic applications. Furthermore, this

assumption is the mirror in the production side to a simplifying assumption already made in the consumer

side of our environment, namely that attention costs subtract linearly from the expected utility of goods.

We finally assume that attention costs are posterior separable (in the sense of Caplin and Dean, 2015).

This assumption is maintained in many macroeconomic applications, including all of those which use mu-

tual information costs.

In this environment, we can show that reduced preferences are convex and continuous and reduced

production sets are convex and closed. Thus, Proposition 6 holds as stated regarding the twin economies.

Properties of Twin-Economy Preferences. Let us first consider the (appropriately amended) program that

defines reduced preferences:

u j ((x(θ))θ∈Θ,π) ≡ max
x,(Φ(·|z))z∈S[π]

∑
θ

∫
Ω

u j (x(ω),θ) dΦ(ω | fπ(θ)) πΘ(θ)−C j [φ,π]

s.t.
∑
θ

∫
Ω

x(ω) dΦ(ω | fπ(θ)) ≤ x(θ), ∀θ ∈Θ

x ∈ LΩ,X (ℓ); Φ(· | fπ(θ)) ∈ B(Ω), ∀θ ∈Θ

(108)

We assume now that, for fixed π, that C j [·,π] is continuous in the collection of (Φ(· | z))z∈S[π], equipped

with the weak topology, where S[π] denotes the support of π.47 Observe that the whole objective function

is therefore continuous in the choice variables. Next, see that the constraint is continuous in x(θ), in par-

ticular because the integral operation
∫
Ω x(ω) dΦ(ω | fπ(θ)) converges for a combined sequence of bounded

functions xn(ω) → x(ω) andΦn(ω | z) →Φ(ω | z) by definition.48 Finally, note that the respective domains for

the goods choice and likelihood choices are compact. We can then apply Berge’s theorem to program (108)

to assert the existence of a maximum and, moreover, that the value function is continuous in the parameter

(x(θ))θ∈Θ. Observe that a similar argument could be used to establish continuity of preferences in our main,

discrete-signal-space case in program (17). As stated in the main text, it is trivial to translate this into the

required continuity of preferences.

We now discuss the convexity of the preferences defined in (108). We first demonstrate convexity in the

47In particular, extend the previous definition to hold for all measures in the (finite) collection.
48Fixing the measure Φn , this requires use of the dominated convergence theorem; and then across the sequence of measures,

this follows from the definition of convergence in the weak topology.
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posterior separable case.49 In particular, say that we can write

C [φ,π] =
∫
Ω

T
[
φz|ω;π

]
dΦω(ω)−T [π;π] (109)

whereΦω(ω) is the marginal CDF over ω and φz|ω ∈P is the posterior distribution over z given ω.

Now imagine we have two bundles (x(θ))θ∈Θ and (x ′(θ))θ∈Θ, such that the associated solutions of (108)

are (x,φ) and (x ′,φ′). Our goal is to show that

u j ((αx(θ)+ (1−α)x ′(θ))θ∈Θ,π) ≥αu j ((x(θ))θ∈Θ,π)+ (1−α)u j ((x ′(θ))θ∈Θ,π) (110)

for anyα ∈ (0,1). We do this by constructing a feasible consumption, in the program with constraints (αx(θ)+
(1−α)x ′(θ))θ∈Θ, that achieves the payoff on the left of the previous expression. The plan is an “α lottery”

across these two plans. In particular, we set

Φ′′(ω | z) =

αΦ
(
ω
α | z

)
if ω ∈ [0,α]

α+ (1−α)Φ′
(
ω−α
1−α | z

)
if ω ∈ (α,1]

(111)

for all z. The continuum state space allows us to accommodate such a lottery. For consumption, similarly

define x ′′ such that50

x ′′(ω) =

x
(
ω
α

)
if ω ∈ [0,α]

x ′ (ω−α
1−α

)
if ω ∈ (α,1]

(112)

The combination of φ′′, x ′′ replicates the strategy x,φ with probability α and the strategy x ′,φ′ with proba-

bility 1−α.

First, see that the cost decomposes in the following calculation:

C [φ,π] =
∫
Ω

T
[
φ′′

z|ω;π
]

dΦ′′
ω(ω)−T [π;π]

=
∫ α

0
T

[
φ′′

z|ω;π
]

dΦ′′
ω(ω)+

∫ 1

α
T

[
φ′′

z|ω;π
]

dΦ′′
ω(ω)−T [π;π]

=α
∫
Ω

T
[
φz|ω;π

]
dΦω(ω)+ (1−α)

∫
Ω

T
[
φ′

z|ω;π
]

dΦ′
ω(ω)−T [π;π]

=αC [φ,π]+ (1−α)C [φ′,π]

(113)

This leverages the fact that the posterior separable cost is linear in posteriors and hence in linear in the

operation of “combining” signals in the current way.51 Next, see that by almost the same logic the expected

49Since our problem is specified in terms of signals and decision rules separately, our argument is much simpler (but also less
strong) than the result in Denti (2022) showing that the stochastic choice programs associated with posterior separable cost func-
tionals are convex.

50If this construction results in a Lipschitz discontinuous x′′(ω), it can trivially be amended (alongside the construction of Φ′′) to
leave a small “gap” between the functions which is interpolated continuously.

51An additional feature of posterior separable cost functionals, which we do not need to use in this construction to achieve weak
convexity, is that costs would be strictly reduced if a positive measure of signals corresponding to the same posteriors (or optimal
decisions) were combined.

66



utility term is linear:

∑
θ

∫
Ω

u j (x ′′(ω),θ) dΦ′′(ω | fπ(θ)) π( fπ(θ)) =α∑
θ

∫
Ω

u j (x(ω),θ) dΦ(ω | fπ(θ)) π( fπ(θ))+

(1−α)
∑
θ

∫
Ω

u j (x ′(ω),θ) dΦ′(ω | fπ(θ)) π( fπ(θ))
(114)

and finally that the constraints are linear:∫
Ω

x ′′(ω) dΦ′′(ω | fπ(θ)) ≤ (αx(θ)+ (1−α)x ′(θ)) (115)

This allows us to establish a lower bound for u j ((αx(θ)+ (1−α)x ′(θ))θ∈Θ,π), and therefore show (110) as

intended.

Convex and Closed Production Sets. We now describe a similar extension for firms. We will first show that

production sets are closed, which like the previous argument of continuous utility functions requires no spe-

cific properties of the cost function or state space (and could have been shown in our baseline environment).

To establish convexity, we will require the combination of posterior separability of costs with a particular

linearity restriction on H . In particular, for some vector v ∈RN+ , we require the representation

H
(
y(ω),C F [φ,π],θ

)= H̃
(
y(ω)+ vC F [φ,π],θ

)
(116)

in which we maintain H̃(0,θ) = 0 for all θ and that H is increasing. We also require the regularity condition

that H̃(·,θ) is continuous for any value of θ.

See that this formulation can capture the “replacement” of any element yn of y with yn + vnC F [φ,π] in

the relevant part of a production function. This allows attention costs to capture requirements of additional

inputs and/or destroyed outputs. In addition, building on the discussion in footnote 9, it allows for attention

costs to be specified in terms of a “dummy input” with a normalized price (e.g., of 1), so firms effectively

maximize profits net of attention costs.

We first state the firm’s problem and establish that production sets are closed. We carry over the reg-

ularity assumptions stated above for production plans and feasible distributions. We redefine the feasible

production set as

F (π) ≡
{

(y(θ))θ∈Θ : ∃ (y(ω),φ) s.t.∫
Ω

y(ω) dΦ(ω | fπ(θ)) ≤ y(θ),∀θ ∈Θ

H̃
(
y(ω)+ v⃗C F [φ,π],θ

)≤ 0,∀(ω,θ)φ a.e.

y ∈ LΩ,Y (ℓ); φ(· | fπ(θ)) ∈ B(Ω), ∀θ ∈Θ
}

(117)

where “φ a.e.” denotes that the statement holds for any subset ofΩ×Θ that has positive measure under the

signal distribution.
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We first argue that this set is closed. Assume it is not. Then there exists some point (y(θ))θ∈Θ ∉ F (π), and

a sequence (yn(θ))θ∈Θ → (y(θ))θ∈Θ (in the Euclidean distance of RN |Θ|) such that (yn(θ))θ∈Θ ∈ F (π) for each

n. In particular, for any ϵ, there exists some (yK (θ))θ∈Θ such that ∥(yK (θ))θ∈Θ−(y(θ))θ∈Θ∥ < ϵ. Next, consider

the program

max
y,(Φ(·|z))z∈S[π]

−∥(y ′(θ))θ∈Θ− (y(θ))θ∈Θ∥

s.t.
∫
Ω

y(ω) dΦ(ω | fπ(θ)) ≤ y ′(θ),∀θ ∈Θ

H̃
(
y(ω)+ v⃗C F [φ,π],θ

)≤ 0,∀(ω,θ)φ a.e.

y ∈ LΩ,Y (ℓ); φ(· | fπ(θ)) ∈ B(Ω), ∀θ ∈Θ

(118)

See that all the constraints define a compact set. Boundedness is by assumption, given the spaces in which

y and φ lie. To see closedness, we first establish in the first constraint that for any sequence yn → y and

Φn →Φ, y ′
n(θ) = ∫

Ω yn(ω) dΦn(ω | fπ(θ)) is a convergent sequence (using the definition of the weak topology

for probability measures); and if each y ′
n(θ) ≤ y ′(θ), then also limn→∞ y ′

n(θ) ≤ y ′(θ). Next, for the second

constraint, see that for any subset of Ω×Θ which has positive measure under the limit signal distribution

represented byΦ, there must exist a subsequence ofΦn for which this set has a positive measure; index this

subsequence by k. Along the subsequence, we argue

H
(
yn(ω)+ v⃗C F [φn ,π],θ

)→ H
(
y(ω)+ v⃗C F [φ,π],θ

)
(119)

using the continuity of H and C F ; and then by a similar argue to the above, using the fact that

H
(
yn(ω)+ v⃗C F [φn ,π],θ

)≤ 0 (120)

everywhere along the subsequence, argue that H
(
y(ω)+ v⃗C F [φ,π],θ

)≤ 0.

Having established points, (118) is a maximization of a continuous function on a compact set and by

Weierstrauss’ theorem must admit a solution. Denote the maximized value of the program as V . Since we

have assumed that (y(θ))θ∈Θ ∉ F (π), it must be that the value function V of this program satisfies V < 0. But

then, as argued above using the fact that (y(θ))θ∈Θ ∈ clF (π), there exists some implementable solution of

(118) that achieves value −V /2 >V . This is a contradiction. Therefore the set F (π) must be closed.

Like with the proof of continuous preferences, see that a much less technical version of the same argu-

ment could be used to prove the closedness of F (π) (and the existence of a solution to our profit maximiza-

tion problem) when the state space was discrete, as in the main model of Section 3.

We now show that the aggregate production set is convex under the restriction in (110). To do this, we

show that for any (y(θ))θ∈Θ, (y ′(θ))θ∈Θ ∈ F (π), we have also (αy(θ)+(1−α)y ′(θ))θ∈Θ ∈ F (π). We show this with

the following construction which mirrors the construction for convex preferences. Let y,φ and y ′,φ′ be the

production plan and attention choice that exist and satisfy the conditions in (117) with respect to constraints

(y(θ))θ∈Θ, (y ′(θ))θ∈Θ.
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Let us now construct a variant plan y ′′,φ′′ in which attention is given by the α lottery as in (111). For

the same argument given in the last subsection, C F [φ′′,π] = αC F [φ,π]+ (1−α)C F [φ′,π] on account of the

posterior separability. The production plan is more complex than the analogue with consumer demand and

is given by the following:52

y ′′(ω) =

y
(
ω
α

)+ v⃗(1−α)(C F [φ,π]−C F [φ′,π]) if ω ∈ [0,α]

y ′ (ω−α
1−α

)+ v⃗α(C F [φ′,π]−C F [φ,π]) if ω ∈ (α,1]
(121)

See that, since attention costs are bounded, the domain of Y can be specified such that y ′′(ω) ∈ Y without

upsetting compactness of Y .

See that this satisfies the capacity constraint as∫
Ω

y ′′(ω) dΦ′′(ω | fπ(θ)) =α
∫
Ω

(y(ω)+ v⃗(1−α)(C F [φ,π]−C F [φ′,π])) dΦ(ω | fπ(θ))

+ (1−α)α
∫
Ω

(y ′(ω)+ v⃗α(C F [φ′,π]−C F [φ,π])) dΦ′(ω | fπ(θ))

≤π(θ)(αy(θ)+ (1−α)y ′(θ))+α(1−α)v⃗(C F [φ,π]−C F [φ′,π])

+α(1−α)v⃗(C F [φ′,π]−C F [φ,π])

=αy(θ)+ (1−α)y ′(θ)

(122)

Next, we check feasibility. See first that, for ω ∈ [0,α],

y ′′(ω)+ v⃗ ·C F [φ′′,π] = y ′′(ω)+ v⃗ · (αC [φ,π]+ (1−α)C [φ′,π])

= y
(ω
α

)
+ v⃗(1−α)(C F [φ,π]−C F [φ′,π])+ v⃗ · (αC [φ,π]+ (1−α)C [φ′,π])

= y
(ω
α

)
+ v⃗((α+1−α)C F [φ,π]+ (1−α− (1−α))C [φ′,π])

= y
(ω
α

)
+ v⃗(C F [φ,π])

(123)

An essentially identical argument shows y ′′(ω)+ v⃗ ·C F [φ′′,π] = y
(
2ω− 1

2

)+ v⃗(C F [φ′,π]) whenω ∈ (α,1]. Since

we know
H

(
y(ω)+ v⃗C F [φ,π],θ

)≤ 0,∀(ω,θ) φ a.e.

H
(
y ′(ω)+ v⃗C F [φ′,π],θ

)≤ 0,∀(ω,θ) φ′ a.e.
(124)

we therefore know the corresponding feasibility condition for y ′′,φ′′. Thus all conditions in (117) are satisfied

and (αy(θ)+ (1−α)y ′(θ))θ∈Θ ∈ F (π).

52As stated previously: if this construction results in a Lipschitz discontinuous y ′′(ω), it can trivially be amended (alongside the
construction ofΦ′′) to leave a small “gap” between the functions which is interpolated continuously.
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E A Dynamic Variant With Vanishing Insurance Over Mistakes

In this Appendix, we consider a variant setting in which transfers contingent on signalsω can be vanishingly

small. In particular, we study an economy that can be thought as a T -period replica of that in the main

analysis. In this economy, the typical consumer faces again and again the same type of consumption and

inattention problem as in the main analysis. To ease exposition, we take the cognition state as z = θ; this

effectively restricts attention to economies in which our invariance condition holds and isolates the role of

complete markets. Provided that mistakes are uncorrelated over time, their cumulative effect on the con-

sumer’s budget vanishes as T →∞. It follows that the equilibria of our original, static economy can be recast

as the equilibria of a twin, dynamic economy in which the insurance over signals is vanishingly small—that

is, transfers cease to depend on signals with probability one.

E.1 Set-up

We carry over from the baseline model the definition of the state of nature θ ∈Θ, the N -dimensional goods

space X , the (finite) signal space Ω, the agent types j ∈ {1, . . . , J }, the type-dependent endowments repre-

sented by e j : Θ→ X , the prior distribution πΘ ∈ ∆(Θ), and the (agents’ conjectured) price functional p :

Θ→RN+ . We define Φ≡∆(Ω)|Θ| as the space of likelihood functions and define a cost functional C :Φ→R+,

suppressing dependence on the prior. We define u : X ×Θ→ R as the consumer’s Bernoulli utility function

over goods.

There are T time periods. In each period t , the consumer makes two choices: an attention choice,

namely a joint distribution φt ∈Φ between the period-t signal ωt and the underlying state of nature θ; and

a consumption choice, namely a mapping xt from the realized signal to a consumption bundle. The payoff

of agent type j is given by

1

T

T∑
t=1

( ∑
ωt ,θ

u j (xt (ωt ),θ)φt (ωt | θ) π(θ)−C j (
φt

))
(125)

That is, their payoffs are additively separable across time, and their per-period payoffs are the same as in

our main model. Also, for simplicity, we assume convexity of preferences in the sense of Definition 13. Their

budget constraint is given by

∑
θ

T∑
t=1

∑
ωt

Pt (θ)xt (ωt )φt (ωt | θ)π(θ) ≤∑
θ

T∑
t=1

∑
ωt

Pt (θ)e j (θ)φt (ωt | θ)π(θ) (126)

where (Pt (θ))T
t=1 is a sequence of prices and e j (θ) is a per-period endowment for each state θ ∈Θ. Note that,

similarly to the main analysis, the budget constraint embeds complete markets not only vis-a-vis the state

of nature θ but also vis-a-vis the realizations of the signalsω. That is, the consumer enjoys insurance against

the random mistakes caused by inattention. The question of interest is how “large” this insurance is.
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E.2 Result: Vanishing Signal-Contingent Transfers as T →∞
To address this question, consider first the T = 1 economy. Clearly, this is the same economy as that studied

in the main analysis. Let (p∗, (x j∗,φ j∗)J
j=1) denote any equilibrium of that economy.

Next, for any T > 1, define the collection {P∗
t , (φ j∗

t , x j∗
t )J

j=1}T
t=1 by letting P∗

t (θ) = P∗(θ), φ j∗
t (ω,θ) =

φ j∗(ω,θ), and x j∗
t (ω) = x j∗(ω) for all t , θ,ω, and j . Note that this collection constitutes an equilibrium of the

T -period economy. This is due to the separability of both consumption and attention choices across time;

the time-independence of the corresponding per-period preferences, attention costs, and endowments; and

the convexity of preferences.53

Finally, let

b(ωT ,θ) ≡
T∑

t=1
Pt (θ) [xt (ωt )−et (θ)]

measure the realized excess lifetime spending of the consumer, conditional on the state of nature is θ and

her cumulative cognitive history ωT = (ωt )T
t=1. The consumer’s budget constraint can then be rewritten as

∑
θ

∑
ωT

b(ωT ,θ)φ(ωT | θ)π(θ) ≤ 0.

where φ(ωT | θ) =∏
ωt∈ωT φ(ωt | θ). This underscores the presence of insurance vis-a-vis inattention: for any

given θ, the consumer is allowed to overspend in some cognitive histories, namely b(ωT ,θ) > 0, provided

that she under-spends in other histories. But now note that, along the aforementioned equilibrium, we have

that

b(ωT ,θ) =
T∑

t=1
p∗(θ)

[
x∗(ωt )−e(θ)

]
and that ωt is i.i.d. across time. By the Strong Law of Large Numbers, we then have that

lim
T→∞

b(ωT ,θ) = b̄(θ), almost surely, ∀θ

where b̄(θ) ≡ P∗(θ) [x̄∗(θ)−e(θ)], x̄∗(θ) ≡ E[x∗(ω)|θ] = ∑
ω x∗(ω)φ∗(ω|θ), and “almost surely” is with respect

to the distribution of the ωt process conditional on θ. That is, as the consumer’s lifespan gets longer and

longer, the transfers b(ωT ,θ) cease to depend on the cognitive history ωT and instead depend only on the

state of nature θ. In this sense, insurance takes place only across θ, and the model implies vanishingly small

cross-agent, ω-contingent transfers.

This proves the claim made in the beginning. To further illustrate the claim, we specialize to the case in

which there is a single type of agent (and drop the superscript j ). By market clearing, for all θ, x̄∗(θ) = e(θ)

and b̄(θ) = 0. We conclude that

lim
T→∞

b(ωT ,θ) = 0, almost surely, ∀θ

53Under convex preferences, were two different consumption and attention strategies optimal in different periods, there would
be a contradiction to optimality—a convex combination of these strategies (both consumption and attention) would lead to strictly
higher payoffs.
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That is, once we remove the scope for insurance across fundamental states θ, we have that transfers are

effectively zero across all realizations of uncertainty.

One can then visualize this as follows. In each period, the consumer “does her best” to equate her ex-

penditure to her income, because this is the optimal thing to in the absence of inattention. Inattention may

cause the consumer to overspend some times and under-spend other times. Such “mistakes” are absorbed

by adjusting the consumer’s balance in a checking account, or a credit card. For finite T , this requires that

the consumer die with a non-zero balance in her account, and complete markets makes this feasible. But

for T →∞, the consumer’s account zeroes out by itself, and the transfers needed to replicate our complete-

markets outcome vanish.

To be clear, however, this does not mean that the incomplete markets outcomes converge to the com-

plete markets outcomes as T →∞. That is, the absence of even small state-contingent transfers could have

discontinuous effects on behavior. For example, agents’ precautionary motivates to avoid certain low-payoff

outcomes (e.g., zero consumption of a specific good) could induce strong precautionary behaviors.

F An Economy with No Insurance Over Mistakes

In this Appendix, we sketch a variant of our model which disallows complete markets over the noise in the

agent’s signal ω. In the previous Appendix (E), we showed that insurance over signals could be vanishingly

small; but, nevertheless, the existence of such insurance was essential to consumers’ ability to satisfy their

budget, despite the fact that none of their consumption choices could be perfectly measurable in both the

signal and fundamental. Now, we want to consider the case in which no insurance is allowed. This raises a

challenge—if we were to maintain the assumption that none of their consumption choices could be perfectly

measurable in both the signal and fundamental, then it would be impossible to meet budget constraints

at equality for all possible states. Following this route would have therefore required the introduction of

default, which would take the analysis well outside the Arrow-Debreu framework. Instead, we bypass this

problem and ensure that budget constraints are satisfied despite incomplete markets by allowing one of the

consumption choices to be fully contingent on both signals and realized states.

If preferences are linear in this residual good, the absence of insurance is inconsequential and the only

source of inefficiency remains the potential for cognitive externalities. If instead preferences are not linear,

then the absence of insurance leads to different marginal values of wealth conditional on different real-

izations of the signals and states. Constrained inefficiency, defined as in Geanakoplos and Polemarchakis

(1986), could arise for essentially the same reasons that these authors highlight: a social planner can manip-

ulate prices to partially simulate the missing insurance.

F.1 Set-up and Equilibrium

For the example, we restrict the environment in a number of ways to simplify analysis. First, we study

a single-consumer-type (J = 1) endowment economy. Second, we assume throughout that a “first-order-
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condition” approach is necessary and sufficient to characterize the optimum for consumers and the social

planner. This presumes differentiability and concavity of the utility function. Finally, we allow the good N to

be an “adjustment good” which has no (binding) domain constraint and automatically adjusts to meet the

budget constraint of the agent given each realization of the signal ω and the physical state θ. Finally, to ease

exposition, we take the cognition state as z = θ, as in Online Appendix E. This effectively restricts attention

to economies in which our invariance condition holds and isolates the role of (in)complete markets.

We depart from our conventional notation in the following way. We write the consumption vector as

x = (x−N , xN ), where x−N is an N −1 length vector of the other goods’ consumption and xN is a scalar repre-

senting adjustment-good consumption. We similarly write the utility function as u(x−N , xN ,θ). We write the

price vector as P (θ) = (P−N (θ),PN (θ)), where P−N (θ) is an N −1 length vector of prices for “standard” goods

and PN (θ) is a scalar corresponding to the price of the adjustment good. Finally we let the endowment be

written as e(θ) = (e−N (θ),eN (θ)) and the consumption domain as X = (X−N ,R) with a similar interpretation.

Note that the adjustment good has an unrestricted domain and can be consumed in negative amounts.

We make the additional assumption, as in Section 7.1 (“Allowing for Incomplete Markets”) and equation

25, that agents have access to complete markets only over the fundamental state θ. Agents have no access

to transfers conditional on the signal realizations ω. We capture this by giving agents access to transfers

represented by b :Θ→R, which must net out in expectation over states θ.

We begin by characterizing necessary conditions for equilibrium. The consumer consumption, θ-contingent

transfers, and a signal structure. Their optimal choices solve the following problem:

max
x−N ,xN ,b,φ

∑
θ

∑
ω

u (x−N (ω), xN (ω,θ),θ)φ(ω|θ)π(θ)−C [φ,π]

s.t. P−N (θ) · (e−N (θ)−x−N (ω))+PN (θ)(eN (θ)−xN (ω,θ)) ≤ b(θ) ∀ω,θ∑
θ

b(θ)π(θ) ≤ 0

(127)

with x−N :Ω→ X−N , xN :Ω×Θ→ XN , b :Θ→ R, and φ ∈Φ. The combination of these constraints capture

how the consumer can freely transfer money across θ but not ω.

Equilibrium is characterized by choices that solve (127) taking as given a price functional P :Θ→RN+ and

a prior consistent with that price functional, as well as the market clearing condition

∑
ω

x−N (ω)φ(ω|θ) = e−N (θ) ∀θ (128)

The market clearing condition for money is redundant from Walras’ law.

We now provide a set of necessary conditions for equilibrium from consumer optimization. Let the

Lagrange multipliers for the first and the second constraint of (127) be, respectively, χ(ω,θ)φ(ω|θ)π(θ) and

η. The first-order-conditions characterizing the optimal choice of money consumption xN (ω,θ) is

∂

∂xN
u (x−N (ω), xN (ω,θ),θ) = PN (θ)χ(ω,θ) ∀ω,θ (129)
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In words, the marginal value of wealth χ(ω,θ) must equal the marginal utility from consuming money de-

flated by the price of the adjustment good, in each state χ(ω,θ). Note that, with no restrictions over the

domain of xN and monotonicity in preferences, another implication is that consumption of good N will be

a “residual” that makes the budget constraint hold at equality:

xN (ω,θ) = 1

pN (θ)

(
−b(θ)+P−N (θ) · (e−N (θ)−x−N (ω))

)
+eN (θ) ∀ω,θ (130)

The first-order conditions for choosing consumption of other goods is

∑
θ

[
∂

∂x−N
u (x−N (ω), xN (ω,θ),θ)−P−N (θ)χ(ω,θ)

]
φ(θ|ω) = 0 ∀ω (131)

where φ(θ |ω) is constructed in the standard way via Bayes’ rule.

Finally, the first-order condition for choosing money balances is

∑
ω
χ(ω,θ)φ(ω|θ) = η ∀θ (132)

In words, insurance over fundamental states allows agents to have the same average marginal value of wealth

in different realizations θ and θ′. But this does not provide full insurance over signals ω—marginal utility

may vary over ω conditional on θ, and how it does so will reflect the exact nature of (optimal) inattention.

Substituting in the marginal value of wealth, equal to the marginal consumption value of money, one

derives the following two necessary conditions for consumer optimality and hence necessary conditions for

equilibrium:

∑
θ

[
P−N (θ)

PN (θ)

∂

∂xN
u (x−N (ω), xN (ω,θ),θ)

]
φ(θ|ω) =∑

θ

[
∂

∂x−N
u (x−N (ω), xN (ω,θ),θ)

]
φ(θ|ω), ∀ω

η= 1

PN (θ)

∑
ω

∂

∂xN
u(x−N (ω), xN (ω,θ),θ)φ(ω|θ) ∀θ

(133)

F.2 Efficient Allocations

We now define the problem of a social planner who faces the same “asset-spanning” restriction. Loosely

speaking, the planner solves the consumer’s program (127) but with control over prices. More specifically,

they choose the tuple (x−N , xN ,b,P,φ) to maximize the following expected utility objective

∑
θ

∑
ω

u (x−N (ω), xN (ω,θ))φ(ω|θ)π(θ)−C [φ,π] (134)

subject to the following feasibility constraints. First, consumption of all goods, including money, is physi-

cally feasible in each state θ: ∑
ω

x−N (ω)φ(ω | θ) ≤ e−N (θ)∑
ω

xN (ω,θ)φ(ω | θ) ≤ eN (θ)
(135)
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Second, each agent has a budget constraint:

PN (θ)(eN (θ)−xN (ω,θ))+P−N (θ) · (e−N (θ)−x−N (ω)) ≤ b(θ) ∀ω,θ

Third, transfers must net out in expectation:
∑
θ b(θ)π(θ) ≤ 0. Finally, the prior π is consistent with the price

functional, or fπ(θ) = (θ,P (θ)) for each θ. We define an efficient allocation as one that solves the above

problem, which is without loss in our economy with one type and symmetric choices.

Observe that this planner’s problem is not perfectly parallel with the one in our main analysis, as the

prices or messages have an instrumental role in transferring resources across states. We will show that even

this “weaker” planner, with a tighter implementability constraint, can often improve upon equilibrium allo-

cations.

We now use a first-order approach to derive necessary conditions for an efficient allocation, again pre-

suming such an allocation exists and it is characterized by first-order conditions. Let the Lagrange mul-

tipliers on the three constraints above respectively be λ(θ)π(θ) (x−N feasibility), α(θ)π(θ) (xN feasibility),

τ(ω,θ)φ(ω|θ)π(θ) (budgets), and γ (portfolio choice). The first-order conditions for xN , x−N , and b are, re-

spectively,

0 =µ(θ)+PN (θ)τ(ω,θ)−
(
∂

∂xN
u(x−N (ω), xN (ω,θ),θ)

)
∀ω,θ

0 =∑
θ

[
∂

∂x−N
u(x−N (ω), xN (ω,θ),θ)−λ(θ)−P−N (θ)τ(ω,θ)

]
φ(θ|ω) ∀ω

γ=∑
ω
τ(ω,θ)φ(ω|θ) ∀θ

(136)

See that these conditions resemble the ones in the consumer problem up to the introduction of shadow

values µ(θ) and λ(θ) for money and non-money consumption goods, respectively. Next, the first-order con-

dition for the goods prices P−N (θ), which show up only in the residual spending constraint, is54

∑
ω
τ(ω,θ) [e−N (θ)−x−N (ω)]φ(ω|θ) = 0 ∀θ (137)

This condition bears special comment, as it drives the key wedge between efficiency and equilibrium. By

adjusting the price vector P−N (θ) in any state θ, the planner affects marginal money consumption condi-

tional on each (ω,θ) in proportion to the net endowment e−N (θ)− x−N (ω). This has marginal value τ(ω,θ)

to the consumer. Such adjustments are exactly what the invisible hand will not do in our environment.

We now develop the above argument mathematically. Like in the consumer’s problem, we solve out for

τ(ω,θ) and rewrite the first-order conditions of (136) in the following way:

54The dollar prices PN (θ) show up only in the prior and the cognitive cost, and therefore function like the purely informational
messages of the main analysis.
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∑
θ

[
∂

∂x−N
u(x−N (ω), xN (ω,θ),θ)

]
φ(θ|ω) =∑

θ

[
P−N (θ)

PN (θ)

(
∂

∂xN
u(x−N (ω), xN (ω,θ),θ)−µ(θ)

)
+λ(θ)

]
φ(θ|ω)

γ+ µ(θ)

PN (θ)
= 1

PN (θ)

∑
ω

∂

∂xN
u(x−N (ω), xN (ω,θ),θ)φ(ω|θ)

(138)

which can be directly compared with the consumer’s equilibrium first-order-conditions (133). See that these

correspond exactly to the first-order conditions of the consumer’s problem if µ(θ) = PN (θ)η and λ(θ) =
P−N (θ)η, or marginal social values of goods equal their prices (up to scale), and γ = 0. Note that the last

normalization is harmless since, with both resource and budget constraints, the asset constraint was redun-

dant.

The condition for choosing prices P−N (θ) is

∑
ω

1

PN (θ)

[
∂

∂xN
u(x−N (ω), xN (ω,θ),θ)−µ(θ)

]
[e−N (θ)−x−N (ω)]φ(ω|θ) = 0 ∀θ (139)

where, in continuation of the discussion above of using prices for redistribution, 1
PN (θ)

(
∂

∂xN
u(x−N (ω), xN (ω,θ),θ)−

µ(θ)
)

gives the marginal consumption value of the adjustment good (net of the social cost), and the planner

changes prices until the average effect on payoffs via the adjustment-good consumption is zero. See that

this condition is generically incompatible with the previous conjecture for µ when evaluated at the equilib-

rium consumption levels, as there is no analogue for this condition in the equilibrium conditions. This is the

sense in which one should not “expect” that an efficient allocation, which necessarily satisfies (139), should

also correspond to an equilibrium allocation.55 Note that the argument makes no reference to the structure

of C apart from assuming there is some randomness over signal realizations. Thus the logic above applies

in a number of simplified settings including exogenously-incomplete-information economies, which un-

derscores our general point that the pathway of inefficiency via incomplete insurance is not a direct conse-

quence of learning or rational inattention.

An important exception is a quasilinear case, in which ∂
∂xN

u is constant as a function of x−N and xN (but

might depend on θ). In particular, if we can write ∂
∂xN

u(x−N (ω), xN (ω,θ),θ) = f (θ) for some function f , then

the planner’s second first-order condition in (138) reduces to µ(θ) = f (θ) and the condition for choosing

prices simplifies via

0 =∑
ω

1

PN (θ)

[
∂

∂xN
u(x−N (ω), xN (ω,θ),θ)−µ(θ)

]
[e−N (θ)−x−N (ω)]φ(ω|θ)

=∑
ω

1

PN (θ)

[
f (θ)−µ(θ)

]
[e−N (θ)−x−N (ω)]φ(ω|θ)

=∑
ω

[0] [e−N (θ)−x−N (ω)]φ(ω|θ) = 0

55A more formal argument of “generic non-efficiency,” as pursued in Geanakoplos and Polemarchakis (1986), would show that
even if necessary condition (139) were satisfied evaluated at the equilibrium, then in a small perturbation of the economic environ-
ment (appropriately defined) it could be made not to hold.
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This represents mathematically the logic that, with quasilinear utility (accommodating even θ-dependence

in the “slope”), there is no first-order benefit to distributing goods across realizations of ω. And it verifies

that the precise role of the quasilinear utility assumption in the example of Section 2 was to substitute for

our main model’s assumption of insurance over ω.

G Economies with a Broader Cognition State

In this Appendix, we describe how to model economies in which the cognition state includes variables other

than the state of nature and prices. We then sketch how an appropriately extended notion of invariance

delivers a straightforward extension of Theorem 1 and Corollary 5.

G.1 Environment

We first define an expanded notion of an inattentive market economy, in which the cognitive process (as

captured by the definition of z) takes as inputs not only on the exogenous state of nature and the price vector

but also the following additional objects: transfers, goods taxes, aggregate trades, and exogenous signals (or,

more informally, “media”).

Equilibrium is defined as in Definition 1 modulo the following changes. As in Section 6.1, we allow each

consumer’s wealth to include a state-dependent transfer, given by t j = T j (θ), for some exogenously specified

and type-specific transfer rule T j :Θ→ R. We next have consumers and firms take as given after-tax prices

p +τ, where the goods taxes are state-dependent, too, or τ = T (θ) for some exogenously specified tax rule

T : Θ→ R The collection (T, (T j )F
j=1) is restricted to be such that the government budget balances in each

state of nature, or
∑J

j=1(T j (θ)+T (θ) · x j (θ))+T (θ) · y(θ) = 0 for all θ ∈Θ. Next, we incorporate as part of the

equilibrium a set of exogenous signals s ∈ RQ , for some Q > 0, defined by the exogenous mapping s = S(θ)

for some S :Θ→R. And finally, we allow the cognition state in equilibrium to be

z =
(
θ, p,τ, (t j )J

j=1, (x j )J
j=1, s

)
We write the domain of this object as z ∈Θ×B0 where

B0 =RN
+ ×RN ×RJ ×X J ×RQ (140)

is the composition of all the domains for the objects after the state of nature. We define a B ⊇B0 as an even

larger possible domain for this state, which the social planner may take advantage of. We correspondingly

redefine the admissible set of priors over z corresponding to any particular B ⊆B, including B =B0, as

PB ≡
{
π :Θ× Im f → [0,1] s.t. π(θ, z) =πΘ(θ)1 f (θ)(z), for some f :Θ→ B

}
. (141)

Along the same lines, we also redefine, for every π ∈ P and domain B , the set Zπ,B ≡ {(θ,b) : π(θ,b) > 0} ⊂
Θ×B and the function fπ,B : θ→Θ×b with fπ,B (θ) = {(θ,b) :π(θ,b) > 0} ∈Θ×B for any θ ∈Θ.
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Toward our efficiency concept, we start with the feasibility concept in 2 along with the following ex-

panded notion of messages. The definition of an arrangement now includes an image set B ⊆ B, the mes-

sage is sent via a rule M :Θ→ B .

G.2 Extending Invariance and Monotonicity

For the arguments above to be well-defined, we require an expanded notion of the cost functional. We

assume, in particular, that for each B ⊆B, each agent (and the firm) has a well-defined cost indexed by B :

C j
B : (∆(Ω))|Θ|×PB (142)

maintaining, as in the main text, the assumption that the support of the fundamentals distribution can be

ordered.

In this context, we redefine our notions of transformations and invariance. Let H ≡ {h : (Θ× B) →
(Θ×B ′);B ,B ′ ⊆B} be the dictionary of transformations from any Θ×B to any Θ×B ′. We next define trans-

formations of information structures based on this larger set of functions:

Definition 15 (Transformations of Information Structures, Revisited). Consider two information structures

(π,φ) and (π̃, φ̃) and a function h ∈ H mapping Θ×B to Θ×B ′. We say that (φ̃, π̃) is the transformation of

(φ,π) under h if

π̃(z) =∑
z ′
π(z ′)1z (h(z ′)) ∀z ∈ Zπ,B (143)

φ̃(ω|z) =
∑

z ′∈Zπ,B
φ(ω|z ′)π(z ′)1z (h(z ′))

π̃(z)
∀ω ∈Ω, z ∈ Zπ̃,B ′ (144)

Sufficiency is similarly extended:

Definition 16. Consider two information structures (φ,π) and (φ̃, π̃) such that (φ̃, π̃) is the transformation of

(φ,π) under h ∈ H mapping Θ×B to Θ×B ′. We say that π̃ is sufficient for π with respect to φ if φ(ω | z) =
φ̃(ω | h(z)) for all ω and all z such that π(z) > 0.

Finally, invariance and monotonicity are written as follows:

Definition 17. Fix a set H ⊆H . Consider any function h ∈ H and any two information structures (φ,π) and

(φ̃, π̃) such that (φ̃, π̃) is the transformation of (φ,π) under g . A cost functional C is

1. invariant with respect to H if C [φ,π] =C [φ̃, π̃] whenever π̃ is sufficient for π with respect to φ.

2. monotone with respect to H if C [φ,π] >C [φ̃, π̃] whenever π̃ is not sufficient for π with respect to φ

While the wording of these definitions is rather similar, the definition has changed considerably. In par-

ticular, invariance and monotonicity can hold along the natural “extension” of a cost functional to different
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domains or state spaces. What does this extension mean? For posterior separable cost functionals, as de-

fined in Appendix B, this relies on an appropriate extension of the divergence T . And if those divergences

are f -divergences as defined in equation 34, reprinted here:

T [π;π′] =∑
z
π(z) · f

(
π′(z)

π(z)

)
, (145)

this is immediate as the support of the probability distribution always remains finite with a length of at most

|Θ|. To use an example, it is reasonable to say that “mutual information costs are invariant and monotone as

per Definition 17” provided that one presumes the natural extension of “always taking the mutual informa-

tion of the signal and the state,” whatever the (finite-support) state space is.

G.3 Possible Equilibrium Results

Given the above adaptation, it seems safe to conjecture, although we do not formally state and prove, that

all of our equilibrium results including efficiency (Theorem 1), existence and implementability of Pareto op-

tima (Proposition 6), and fundamentalness of equilibrium (Proposition 7) readily extend to our environment

under invariance and monotonicity for all of H (e.g., as in our natural extension of mutual information). The

content of these statements is that, under fully invariant and monotone costs like mutual information,

• Tax instruments are never optimal for a purely “informational” role, for instance to nudge agents to-

ward or away from learning about certain contingencies.

• Media, expert opinions, blogs, and tweets, as captured in the exogenous signals s = S(θ), have no

instrumental effect on equilibrium, as agents can always construct equivalent signals via unrestricted

information acquisition.

• Noise in publicly available signals, which otherwise has no instrumental role, is optimally ignored in

equilibrium.

• “Market data” in the form of trades or aggregate consumption statistics cannot be designed to have

better informational content.

These lessons follow (we conjecture) from essentially the same premises articulated in our main analysis,

but would be made more concrete in this extended environment.
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